Qualitative properties of a functional differential equation

Abstract

The aim of this paper is to discuss some basic problems (existence and uniqueness, data dependence) of the fixed point theory for a functional differential equation with an abstract Volterra operator. In the end an application is given.

Authors

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

V.A. Ilea
(Babes Bolyai Univ)

Keywords

functional differential equations; weakly Picard operators; data dependence, abstract Volterra-equations; weakly picard operators

Cite this paper as:

D. Otrocol, V. Ilea, Qualitative properties of a functional differential equation, Electron. J. Qual. Theory Differ. Equ.,  47(2014), pp. 1-8

PDF

About this paper

Journal

Electronic Journal of Qualitative Theory of Differential Equations

Publisher Name

Univ. Szeged, Bolyai Institute, Szeged, Hungary

DOI
Print ISSN

1417-3875

Online ISSN
MR

MR3270096

ZBL

Google Scholar

[1] N. V. Azbelev (editor), Functional-differential equations (in Russian), Perm. Politekh. Inst., Perm, 1985. MR0931083

[2] C. Corduneanu, Abstract Volterra equations: a survey. Nonlinear operator theory, Math. Comput. Modelling 32(2000), 1503–1528. MR1800673

[3] M. Dobritoiu, A-M. Dobritoiu, A functional-integral equation via weakly Picard operators, in: Proc. of the WSEAS 13th International Conf. on Computers, Rodos, Greece, July 23–25, 2009, WSEAS Press, 159–162.

[4] M. Dobritoiu, I. A. Rus, M. A. Serban, An integral equation arising from infectious diseases, via Picard operators, Stud. Univ. Babes–Bolyai Math. 52(2007), 81–94. MR2368059

[5] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Kuwer Academic Publishers Group, Dordrecht, 1996. MR1418859

[6] V. A. Ilea, Differential equation of first order with mixed-type argument (in Romanian), Cluj University Press, Cluj-Napoca, 2006.

[7] V. Kolmanovskii, A. Myshkis, Applied theory of functional-differential equations, Kluwer Academic Publishers Group, Dordrecht, 1992. MR1256486

[8] V. Muresan, Ecuatii diferentiale cu modificarea afina a argumentului (in Romanian) [Differential equations with affine modification of the argument], Transilvania Press, Cluj-Napoca, 1997. MR1667311

[9] D. Otrocol, Abstract Volterra operators, Carpathian J. Math. 24(2008), No. 3, 370–377.

[10] I. A. Rus, Picard operators and applications, Sci. Math. Jpn. (1), 58(2003), 191–219. MR1987831

[11] I. A. Rus, Generalized contractions and applications, Cluj University Press, 2001. MR1947742

[12] I. A. Rus, Weakly Picard operators and applications, Semin. Fixed Point Theory Cluj-Napoca 2(2001), 41–57. MR1921517

[13] I. A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math. 26(2010), 230–258. MR2721982

[14] M. A. Serban, I. A. Rus, A. Petrusel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Inequal. Appl. 13(2010), No. 2, 255–269. MR2662017

Systems of functional-differential equations with maxima, of mixed type

Diana Otrocol
“T. Popoviciu” Institute of Numerical Analysis, Romanian Academy,
P.O.Box 68-1, 400110, Cluj-Napoca, Romania
e-mail: dotrocol@ictp.acad.ro
Abstract

In this paper we study some properties of the solutions of a second order system of functional-differential equations with maxima, of mixed type, with “boundary” conditions. We use the Perov’s fixed point theorem and the weakly Picard operator technique.
MSC 2010: 34K10, 47H10.
Keywords: Perov’s fixed point theorem, weakly Picard operator, equations of mixed type, equations with maxima.

1 Introduction

In the last few decades, much attention has been paid to automatic control systems and their applications to computational mathematics and modeling. Many problems in control theory correspond to the maximal deviation of the regulated quantity. A classical example is that of an electric generator. In this case, the mechanism becomes active when the maximum voltage variation that is permitted is reached in an interval of time It=[th,t]I_{t}=[t-h,t] with hh a positive constant. The equation which describes the action of this regulator has the form

V(t)=δV(t)+pmaxsItV(s)+F(t),V^{\prime}(t)=-\delta V(t)+p\ \underset{s\in I_{t}}{\mathrm{max}}\ V(s)+F(t),

where δ\delta and pp are constants that are determined by the characteristic of system, V(t)V(t) is the voltage and F(t)F(t) is the effect of the perturbation that appears associated to the change of voltage [1].

The use of the Perov’s fixed point theorem [10, 11] generates an efficient technique to approach systems of functional-differential equations [5, 14]. In the study of existence and uniqueness of the solution of an operatorial equation, the notions of Picard and weakly Picard operators are very useful [11, 13], [15]-[17]. Some applications of the theory of weakly Picard operators can be found in [13]-[17], [3, 4] and [6]-[9]. Some problems concerning differential equations with maxima were studied in [1, 5, 8, 9] and in the monograph [2]. In [8] we have obtained conditions for existence and uniqueness, inequalities of Čaplygin type and data dependence for the solutions of functional-differential equations with maxima while in [9] we apply the technique of weakly Picard operators for the second order functional-differential equations with maxima, of mixed type. Here we continue the work from [8] and [9] with the study of systems of functional-differential equations with maxima, of mixed type.

We consider the following functional-differential system

x′′(t)=f(t,x(t),maxth1ξtx(ξ),maxtξt+h2x(ξ)),t[a,b]-x^{\prime\prime}(t)=f\big(t,x(t),\underset{t-h_{1}\leq\xi\leq t}{\max}x(\xi),\underset{t\leq\xi\leq t+h_{2}}{\max}x(\xi)\big),\ t\in[a,b] (1)

with the “boundary” conditions

{x(t)=φ(t),t[ah1,a],x(t)=ψ(t),t[b,b+h2].\left\{\begin{array}[c]{l}x(t)=\varphi(t),\ t\in[a-h_{1},a],\\ x(t)=\psi(t),\ t\in[b,b+h_{2}].\end{array}\right. (2)

Suppose that:

  • (C1)

    h1,h2,ah_{1},h_{2},\ a\ and b,a<b,h1>0,h2>0;b\in\mathbb{R},\ a<b,\ h_{1}>0,\ h_{2}>0;

  • (C2)

    fC([a,b]×m×m×m,m)f\in C([a,b]\times\mathbb{R}^{m}\times\mathbb{R}^{m}\times\mathbb{R}^{m},\mathbb{R}^{m});

  • (C3)

    there exists a matrix LfMm×m(+)L_{f}\in M_{m\times m}(\mathbb{R}_{+}) such that

    |f(t,u1,u2,u3)f(t,v1,v2,v3)|Lf(max1i3|u1iv1i|max1i3|umivmi|),\left|f(t,u^{1},u^{2},u^{3})-f(t,v^{1},v^{2},v^{3})\right|\leq L_{f}{\left(\begin{array}[c]{c}\underset{1\leq i\leq 3}{\max}\left|u_{1}^{i}-v_{1}^{i}\right|\\ \vdots\\ \underset{1\leq i\leq 3}{\max}\left|u_{m}^{i}-v_{m}^{i}\right|\end{array}\right)},

    for all t[a,b]t\in[a,b] and ui=(u1i,,umi),vi=(v1i,,vmi)m,i=1,2,3u^{i}=(u_{1}^{i},\ldots,u_{m}^{i}),v^{i}=(v_{1}^{i},\ldots,v_{m}^{i})\in\mathbb{R}^{m},i=1,2,3 where

    |w|:=(|w1||wm|);\left|w\right|:=\left(\begin{array}[c]{c}\left|w_{1}\right|\\ \vdots\\ \left|w_{m}\right|\end{array}\right);
  • (C4)

    φC([ah1,a],m)\varphi\in C([a-h_{1},a],\mathbb{R}^{m}) and ψC([b,b+h2],m).\psi\in C([b,b+h_{2}],\mathbb{R}^{m}).

Let GG be the Green function of the following problem

x′′(t)\displaystyle-x^{\prime\prime}(t) =χ(t),t[a,b]\displaystyle=\chi(t),\ t\in[a,b]
x(a)\displaystyle\ x(a) =0,x(b)=0,\displaystyle=0,\ x(b)=0,

where χC([a,b],)\chi\in C([a,b],\mathbb{R}). Denoting

w(φ,ψ)(t):=tabaψ(b)+btbaφ(a),w(\varphi,\psi)(t):=\tfrac{t-a}{b-a}\psi(b)+\tfrac{b-t}{b-a}\varphi(a),

the problem (1)–(2), with smoothness condition xC([ah1,b+h2],m)C2([a,b],m)x\in C([a-h_{1},b+h_{2}],\mathbb{R}^{m})\cap C^{2}([a,b],\mathbb{R}^{m}), is equivalent to the following equation

x(t)={φ(t),t[ah1,a],w(φ,ψ)(t)+abG(t,s)f(s,x(s),maxsh1ξsx(ξ),maxsξs+h2x(ξ))𝑑s,t[a,b],ψ(t),t[b,b+h2],x(t)=\left\{\begin{array}[c]{l}\varphi(t),\ t\in[a-h_{1},a],\\ w(\varphi,\psi)(t)\!\!+\!\!\int_{a}^{b}\!G(t,s)\!f\big(s,x(s),\!\underset{s\!-\!h_{1}\leq\xi\leq s}{\max}x(\xi),\!\underset{s\leq\xi\leq s\!+\!h_{2}}{\max}x(\xi)\big)ds,\ t\in[a,b],\\ \psi(t),\ t\in[b,b+h_{2}],\end{array}\right. (3)

xC([ah1,b+h2],m).x\in C([a-h_{1},b+h_{2}],\mathbb{R}^{m}).

The equation (1) is equivalent to

x(t)={x(t),t[ah1,a],w(x|[ah1,a],x|[b,b+h2])(t)++abG(t,s)f(s,x(s),maxsh1ξsx(ξ),maxsξs+h2x(ξ))𝑑s,t[a,b],x(t),t[b,b+h2],x(t)=\left\{\begin{array}[c]{l}x(t),\ t\in[a-h_{1},a],\\ w(x|_{[a-h_{1},a]},x|_{[b,b+h_{2}]})(t)+\\ \quad+\!\int_{a}^{b}\!G(t,s)\!f\big(s,x(s),\!\underset{s\!-\!h_{1}\leq\xi\leq s}{\max}x(\xi),\!\underset{s\leq\xi\leq s\!+\!h_{2}}{\max}x(\xi)\big)ds,\!\!\ t\in[a,b],\\ x(t),\ t\in[b,b+h_{2}],\end{array}\right. (4)

xC([ah1,b+h2],m).x\in C([a-h_{1},b+h_{2}],\mathbb{R}^{m}).

In what follows we consider the operators:

Bf,Ef:C([ah1,b+h2],m)C([ah1,b+h2],m)B_{f},E_{f}:C([a-h_{1},b+h_{2}],\mathbb{R}^{m})\rightarrow C([a-h_{1},b+h_{2}],\mathbb{R}^{m})

defined by Bf(x)(t):=B_{f}(x)(t):= the right hand side of (3) and Ef(x)(t):=E_{f}(x)(t):= the right hand side of (4). Let X:=(C[ah1,b+h2],m)X:=(C[a-h_{1},b+h_{2}],\mathbb{R}^{m}) and Xφ,ψ:={xX|x|[ah1,a]=φ,x|[b,b+h2]=ψ}X_{\varphi,\psi}:=\{x\in X|\ x|_{[a-h_{1},a]}=\varphi,\ x|_{[b,b+h_{2}]}=\psi\}. It is clear that X=φ,ψXφ,ψX=\underset{\varphi,\psi}{\bigcup}X_{\varphi,\psi}\ is a partition of X.X.

The following result is known.

Lemma 1.1

[13] Suppose that the conditions (C1),(C2)(C_{1}),\ (C_{2}) and (C4)(C_{4}) are satisfied. Then

  • (a)

    Bf(X)Xφ,ψB_{f}(X)\subset X_{\varphi,\psi} and Bf(Xφ,ψ)Xφ,ψ;B_{f}(X_{\varphi,\psi})\subset X_{\varphi,\psi};

  • (b)

    Bf|Xφ,ψ=Ef|Xφ,ψ.B_{f}|_{X_{\varphi,\psi}}=E_{f}|_{X_{\varphi,\psi}}.

Let MG:=(Gij)i,j=1,m¯Mm×m(+)M_{G}:=(\left\|G_{ij}\right\|)_{i,j=\overline{1,m}}\in M_{m\times m}(\mathbb{R}_{+}), where Gi,j=max{|Gi,j(x,s)|:\left\|G_{i,j}\right\|=\max\{\left|G_{i,j}(x,s)\right|: (x,s)[a,b]×[a,b]},i,j=1,m¯(x,s)\in[a,b]\times[a,b]\},\ i,j=\overline{1,m} and

Q:=(ba)MGLfMm×m(+).Q:=(b-a)M_{G}L_{f}\in M_{m\times m}(\mathbb{R}_{+}). (5)

The following is a synopsis of the paper. In Section 2 we introduce notation, definitions and results from weakly Picard operator theory. In Section 3 we obtain existence and uniqueness result using Perov’s fixed point theorem and the weakly Picard operator technique. Sections 4 and 5 present inequalities of Čaplygin type and data dependence results.

2 Picard and Weakly Picard operators

In this section, we introduce notation, definitions, and preliminary results which are used throughout this paper (see [12]-[17]). Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. We shall use the following notations:

FA:={xXA(x)=x}F_{A}:=\{x\in X\mid A(x)=x\} - the fixed point set of AA;

I(A):={YXA(Y)Y,Y}I(A):=\{Y\subset X\mid A(Y)\subset Y,Y\neq\emptyset\} - the family of the nonempty invariant subset of AA;

An+1:=AAn,A0=1X,A1=A,nA^{n+1}:=A\circ A^{n},\;A^{0}=1_{X},\;A^{1}=A,\;n\in\mathbb{N}.

Definition 2.1

Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a Picard operator (PO) if there exists xXx^{\ast}\in X such that FA={x}F_{A}=\{x^{\ast}\} and the sequence (An(x0))n(A^{n}(x_{0}))_{n\in\mathbb{N}} converges to xx^{\ast} for all x0Xx_{0}\in X.

Definition 2.2

Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a weakly Picard operator (WPO) if the sequence (An(x))n(A^{n}(x))_{n\in\mathbb{N}} converges for all xXx\in X, and its limit (which may depend on xx) is a fixed point of AA.

Definition 2.3

If AA is weakly Picard operator then we consider the operator AA^{\infty} defined by A:XX,A(x):=limnAn(x)A^{\infty}:X\rightarrow X,\ A^{\infty}(x):=\underset{n\rightarrow\infty}{\lim}A^{n}(x).

Remark 2.4

It is clear that A(X)=FA.A^{\infty}(X)=F_{A}.

Throughout this paper we denote by Mm×m(+)M_{m\times m}(\mathbb{R}_{+}) the set of all m×mm\times m matrices with positive elements and by II the identity m×mm\times m matrix. A square matrix QQ with nonnegative elements is said to be convergent to zero if Qk0Q^{k}\rightarrow 0 as kk\rightarrow\infty. It is known that the property of being convergent to zero is equivalent to any of the following three conditions (see [12]):

  • (a)

    IQI-Q is nonsingular and (IQ)1=I+Q+Q2+(I-Q)^{-1}=I+Q+Q^{2}+\cdots (where II stands for the unit matrix of the same order as QQ);

  • (b)

    the eigenvalues of QQ are located inside the unit open disc of the complex plane;

  • (c)

    IQI-Q is nonsingular and (IQ)1(I-Q)^{-1} has nonnegative elements.

We finish this section by recalling the following fundamental result (see, e.g., [10]).

Theorem 2.5

(Perov’s fixed point theorem) Let (X,d)(X,d) with d(x,y)md(x,y)\in\mathbb{R}^{m}, be a complete generalized metric space and A:XXA:X\rightarrow X an operator. We suppose that there exists a matrix QMm×m(+)Q\in M_{m\times m}(\mathbb{R}_{+}), such that

  • (i)

    d(A(x),A(y))Qd(x,y)d(A(x),A(y))\leq Qd(x,y), for all x,yX;x,y\in X;

  • (ii)

    Qn0Q^{n}\rightarrow 0, as nn\rightarrow\infty.

Then

  • (a)

    FA={x},F_{A}=\{x^{\ast}\},

  • (b)

    An(x)=xA^{n}(x)=x^{\ast}, as nn\rightarrow\infty and

    d(An(x),x)(IQ)1Qnd(x0,A(x0)).d(A^{n}(x),x^{\ast})\leq(I-Q)^{-1}Q^{n}d(x_{0},A(x_{0}))\text{.}

3 Existence and uniqueness

Let us consider the problem (1)–(2). We obtain the following existence and uniqueness theorem.

Theorem 3.1

Suppose that:

  • (i)

    the conditions (C1)(C_{1})(C4)(C_{4}) are satisfied;

  • (ii)

    Qn0Q^{n}\rightarrow 0, as nn\rightarrow\infty, where QQ is defined by (5).

Then

  • (a)

    the problem (1)–(2) has a unique solution x=(x1,,xm)C([ah1,b+h2],m)C2([a,b],m);x^{\ast}=(x_{1}^{\ast},\ldots,x_{m}^{\ast})\in C([a-h_{1},b+h_{2}],\mathbb{R}^{m})\cap C^{2}([a,b],\mathbb{R}^{m});

  • (b)

    for all x0C([a,b],m),x_{0}\in C([a,b],\mathbb{R}^{m}), the sequence (xn)n(x^{n})_{n\in\mathbb{N}}, defined by xn+1=Bf(xn)x^{n+1}=B_{f}(x^{n}), converges uniformly to xx^{\ast}, for all t[a,b],t\in[a,b], and, moreover

    (|x1n(t)x1(t)||xmn(t)xm(t)|)(IQ)1Qn(|x10(t)x11(t)||xm0(t)xm1(t)|).\left(\begin{array}[c]{c}\left|x_{1}^{n}(t)-x_{1}^{\ast}(t)\right|\\ \vdots\\ \left|x_{m}^{n}(t)-x_{m}^{\ast}(t)\right|\end{array}\right)\leq(I-Q)^{-1}Q^{n}\left(\begin{array}[c]{c}\left|x_{1}^{0}(t)-x_{1}^{1}(t)\right|\\ \vdots\\ \left|x_{m}^{0}(t)-x_{m}^{1}(t)\right|\end{array}\right).

Proof. Consider the Banach space (C([ah1,b+h2],m),)(C([a-h_{1},b+h_{2}],\mathbb{R}^{m}),\left\|\cdot\right\|) where \left\|\cdot\right\| is the generalized Chebyshev norm,

u:=(u1um), where ui:=maxah1tb+h2|ui(t)|,i=1,m¯.\left\|u\right\|:=\left(\begin{array}[c]{c}\left\|u_{1}\right\|\\ \vdots\\ \left\|u_{m}\right\|\end{array}\right)\text{, where }\left\|u_{i}\right\|:=\underset{a-h_{1}\leq t\leq b+h_{2}}{\max}\left|u_{i}(t)\right|,\ i=\overline{1,m}.

The problem (1)–(2) is equivalent to the fixed point equation

Bf(x)=x,xC([ah1,b+h2],m).B_{f}(x)=x,\ x\in C([a-h_{1},b+h_{2}],\mathbb{R}^{m}).

From the condition (C3)(C_{3}) we have, for any t[a,b]t\in[a,b]

|Bf(x)(t)Bf(y)(t)|\displaystyle\left|B_{f}(x)(t)-B_{f}(y)(t)\right| ab|G(t,s)[f(s,x(s),maxah1ξax(ξ),maxbξb+h2x(ξ))\displaystyle\leq\int_{a}^{b}\left|G(t,s)\Big[f\big(s,x(s),\underset{a-h_{1}\leq\xi\leq a}{\max}x(\xi),\underset{b\leq\xi\leq b+h_{2}}{\max}x(\xi)\big)-\right.
f(s,y(s),maxah1ξay(ξ),maxbξb+h2y(ξ))]|ds\displaystyle\quad-\left.f\big(s,y(s),\underset{a-h_{1}\leq\xi\leq a}{\max}y(\xi),\underset{b\leq\xi\leq b+h_{2}}{\max}y(\xi)\big)\Big]\right|ds
abMGLfmax{|x(s)y(s)|,|maxah1ξax(ξ)maxy(ξ)ah1ξa|,\displaystyle\leq\int_{a}^{b}M_{G}L_{f}\max\left\{\left|x(s)-y(s)\right|,\bigg|\underset{a-h_{1}\leq\xi\leq a}{\max}x(\xi)-\underset{a-h_{1}\leq\xi\leq a}{\max y(\xi)}\bigg|\right.,
|maxbξb+h2x(ξ)maxy(ξ)bξb+h2|}ds\displaystyle\quad\quad\left.\bigg|\underset{b\leq\xi\leq b+h_{2}}{\max}x(\xi)-\underset{b\leq\xi\leq b+h_{2}}{\max y(\xi)}\bigg|\right\}ds\leq
abMGLfmaxah1ξb+h2|x(ξ)y(ξ)|𝑑s\displaystyle\leq\int_{a}^{b}M_{G}L_{f}\underset{a-h_{1}\leq\xi\leq b+h_{2}}{\max}\left|x(\xi)-y(\xi)\right|ds\leq
(ba)MGLfxy=Qxy.\displaystyle\leq(b-a)M_{G}L_{f}\ \left\|x-y\right\|=Q\left\|x-y\right\|.

Then Bf(x)Bf(y)Qxy, for all x,yX\left\|B_{f}(x)-B_{f}(y)\right\|\leq Q\left\|x-y\right\|,\text{ for all }x,y\in X and by (ii), the operator BfB_{f} is QQ-contraction. From the Perov’s fixed point theorem we have that the operator BfB_{f} is PO and has a unique fixed point x=(x1,,xm)Xx^{\ast}=(x_{1}^{\ast},\ldots,x_{m}^{\ast})\in X. Since ff is continuous, we have that xC2([a,b],m)x^{\ast}\in C^{2}([a,b],\mathbb{R}^{m}) is the unique solution for the problem (1)–(2).  

Remark 3.2

From the proof of Theorem 3.1, it follows that the operator BfB_{f} is PO. Since Bf|Xφ,ψ=Ef|Xφ,ψB_{f}|_{X_{\varphi,\psi}}=E_{f}|_{X_{\varphi,\psi}} and

X:=C([ah1,b+h2],m)=φ,ψXφ,ψ,Ef(Xφ,ψ)Xφ,ψX:=C([a-h_{1},b+h_{2}],\mathbb{R}^{m})=\underset{\varphi,\psi}{\bigcup}X_{\varphi,\psi},\ E_{f}(X_{\varphi,\psi})\subset X_{\varphi,\psi}

it follows that the operator EfE_{f} is WPO and, moreover FEfXφ,ψ={xφ,ψ},φC([ah1,a],m),ψC([b,b+h2],m)F_{E_{f}}\cap X_{\varphi,\psi}=\{x_{\varphi,\psi}^{\ast}\},\ \forall\varphi\in C([a-h_{1},a],\mathbb{R}^{m}),\ \forall\psi\in C([b,b+h_{2}],\mathbb{R}^{m}), where xφ,ψx_{\varphi,\psi}^{\ast} is the unique solution of the problem (1)–(2).

Example 3.3

Consider the following system of differential equations with “maxima”,

x′′(t)=P1x(t)+P2maxth1ξtx(ξ)+P3maxtξt+h2x(ξ)+g(t),t[a,b],-x^{\prime\prime}(t)\!=P^{1}x(t)\!+\!P^{2}\underset{t\!-\!h_{1}\leq\xi\leq t}{\max}x(\xi)\!+\!P^{3}\underset{t\leq\xi\leq t\!+\!h_{2}}{\max}x(\xi)\!+g(t),\ t\in[a,b], (6)

with the “boundary” conditions

{x(t)=φ(t),t[ah1,a],x(t)=ψ(t),t[b,b+h2],\left\{\begin{array}[c]{c}x(t)=\varphi(t),\ t\in[a-h_{1},a],\\ x(t)=\psi(t),\ t\in[b,b+h_{2}],\end{array}\right. (7)

where Pi=(aiaibibi)P^{i}=\left(\begin{array}[c]{cc}a^{i}&a^{i}\\ b^{i}&b^{i}\end{array}\right), ai,bi+,i=1,3¯,gC[a,b]a^{i},b^{i}\in\mathbb{N}_{+},i=\overline{1,3},\ g\in C[a,b]. In this case f(t,u1,u2,u3)=P1u1+P2u2+P3u3+g(t),t[a,b],u1,u2,u32f(t,u^{1},u^{2},u^{3})=P^{1}u^{1}+P^{2}u^{2}+P^{3}u^{3}+g(t),\ t\in[a,b],u^{1},u^{2},u^{3}\in\mathbb{R}^{2}, Lf=(a1+a2+a3a1+a2+a3b1+b2+b3b1+b2+b3)L_{f}=\left(\begin{array}[c]{cc}a^{1}+a^{2}+a^{3}&a^{1}+a^{2}+a^{3}\\ b^{1}+b^{2}+b^{3}&b^{1}+b^{2}+b^{3}\end{array}\right) M2×2(+)\in M_{2\times 2}(\mathbb{R}_{+}), MG=(Gij)i,j=1,2M2×2(+),M_{G}=(\left\|G_{ij}\right\|)_{i,j=1,2}\in M_{2\times 2}(\mathbb{R}_{+}), where Gi,j=max{|Gi,j(x,s)|:(x,s)[a,b]×[a,b]},i,j=1,2\left\|G_{i,j}\right\|=\max\{\left|G_{i,j}(x,s)\right|:(x,s)\in[a,b]\times[a,b]\},\ i,j=1,2 and Q=(ba)MGLfM2×2(+).Q=(b-a)M_{G}L_{f}\in M_{2\times 2}(\mathbb{R}_{+}).

Suppose that:

  • (C1{}_{1}^{\prime})

    h1,h2,ah_{1},h_{2},\ a\ and b,a<b,h1>0,h2>0;b\in\mathbb{R},\ a<b,\ h_{1}>0,\ h_{2}>0;

  • (C2{}_{2}^{\prime})

    a1+a2+a3+b1+b2+b3<1a^{1}+a^{2}+a^{3}+b^{1}+b^{2}+b^{3}<1;

  • (C3{}_{3}^{\prime})

    φC([ah1,a],2)\varphi\in C([a-h_{1},a],\mathbb{R}^{2}) and ψC([b,b+h2],2).\psi\in C([b,b+h_{2}],\mathbb{R}^{2}).

Theorem 3.1 can be now applied, since all its assumptions are verified.

4 Inequalities of Čaplygin type

In order to establish the Čaplygin type inequalities we need the following abstract result.

Lemma 4.1

(see [15]) Let (X,d,)(X,d,\leq) be an ordered metric space and A:XXA:X\rightarrow X an operator. Suppose that AA is increasing and WPO. Then the operator AA^{\infty} is increasing.

Now we consider the operators EfE_{f} and BfB_{f} on the ordered Banach space (C([ah1,b+h2],m),,)(C([a-h_{1},b+h_{2}],\mathbb{R}^{m}),\left\|\cdot\right\|,\leq) where we consider the following order relation on m\mathbb{R}^{m}: xyxiyi,i=1,m¯x\leq y\Leftrightarrow x_{i}\leq y_{i},\ i=\overline{1,m}.

Theorem 4.2

Suppose that:

  • (a)

    the conditions (C1)(C4)(C_{1})-(C_{4}) are satisfied;

  • (b)

    Qn0Q^{n}\rightarrow 0, as nn\rightarrow\infty, where QQ is defined by (5);

  • (c)

    f(t,,,):m×m×mmf(t,\cdot,\cdot,\cdot):\mathbb{R}^{m}\times\mathbb{R}^{m}\times\mathbb{R}^{m}\rightarrow\mathbb{R}^{m} is increasing, t[a,b].\forall t\in[a,b].

Let xx be a solution of equation (1) and yy a solution of the inequality

y′′(t)f(t,y(t),maxth1ξty(ξ),maxtξt+h2y(ξ)),t[a,b].-y^{\prime\prime}(t)\leq f\big(t,y(t),\underset{t-h_{1}\leq\xi\leq t}{\max}y(\xi),\underset{t\leq\xi\leq t+h_{2}}{\max}y(\xi)\big),\ t\in[a,b].

Then y(t)x(t),t[ah1,a][b,b+h2]y(t)\leq x(t),\forall t\in[a-h_{1},a]\cup[b,b+h_{2}] implies that yxy\leq x.

Proof. Let us consider the operator w~:C([ah1,b+h2],m)C([ah1,b+h2],m)\widetilde{w}:C([a-h_{1},b+h_{2}],\mathbb{R}^{m})\rightarrow C([a-h_{1},b+h_{2}],\mathbb{R}^{m}) defined by

w~(z)(t):={z(t),t[ah1,a],w(z|[ah1,a],z|[b,b+h2])(t),t[a,b],z(t),t[b,b+h2],\widetilde{w}(z)(t):=\begin{cases}z(t),&\ t\in[a-h_{1},a],\\ w(z|_{[a-h_{1},a]},z|_{[b,b+h_{2}]})(t),&\ t\in[a,b],\\ z(t),&\ t\in[b,b+h_{2}],\end{cases}

for zC([ah1,b+h2],m).z\in C([a-h_{1},b+h_{2}],\mathbb{R}^{m}). First of all we remark that w(y|[ah1,a],y|[b,b+h2])w(x|[ah1,a],x|[b,b+h2])w(y|_{[a-h_{1},a]},y|_{[b,b+h_{2}]})\leq w(x|_{[a-h_{1},a]},x|_{[b,b+h_{2}]}) and w~(y)w~(x)\widetilde{w}(y)\leq\widetilde{w}(x).

In the terms of the operator Ef,E_{f}, we have x=Ef(x)x=E_{f}(x) and yEf(y)y\leq E_{f}(y). From Remark 3.2 we have that EfE_{f} is WPO. On the other hand, from the condition (c) and Lemma 4.1 we get that the operator EfE_{f}^{\infty} is increasing. Hence yEf(y)Ef2(y)Ef(y)=Ef(w~(y))Ef(w~(x))=xy\leq E_{f}(y)\leq E_{f}^{2}(y)\leq\ldots\leq E_{f}^{\infty}(y)=E_{f}^{\infty}(\widetilde{w}(y))\leq E_{f}^{\infty}(\widetilde{w}(x))=x. So, yxy\leq x.  

5 Data dependence: monotony

In order to study the monotony of the solution of the problem (1)–(2) with respect to φ,ψ\varphi,\ \psi and ff, we need the following result from the WPOs theory.

Lemma 5.1

(Abstract comparison lemma, [16]) Let (X,d,)(X,d,\leq) be an ordered metric space and A,B,C:XXA,B,C:X\rightarrow X be such that:

  • (i)

    the operator A,B,CA,B,C are WPOs;

  • (ii)

    ABC;A\leq B\leq C;

  • (iii)

    the operator BB is increasing.

Then xyzx\leq y\leq z implies that A(x)B(y)C(z).A^{\infty}(x)\leq B^{\infty}(y)\leq C^{\infty}(z).

From this abstract result we obtain the following result:

Theorem 5.2

Let fiC([a,b]×m×m×m,m),i=1,3¯,f^{i}\in C([a,b]\times\mathbb{R}^{m}\times\mathbb{R}^{m}\times\mathbb{R}^{m},\mathbb{R}^{m}),i=\overline{1,3}, and suppose that conditions (C1)(C_{1})(C4)(C_{4}) hold. Furthermore suppose that:

  • (i)

    f1f2f3;f^{1}\leq f^{2}\leq f^{3};

  • (ii)

    f2(t,,,):m×m×mmf^{2}(t,\cdot,\cdot,\cdot):\mathbb{R}^{m}\times\mathbb{R}^{m}\times\mathbb{R}^{m}\rightarrow\mathbb{R}^{m} is increasing.

Let xix^{i} be a solution of the equation

(xi)′′(t)=fi(t,x(t),maxth1ξtx(ξ),maxtξt+h2x(ξ)),t[a,b] and i=1,3¯.-(x^{i})^{\prime\prime}(t)=f^{i}\big(t,x(t),\!\underset{t-h_{1}\leq\xi\leq t}{\max}x(\xi),\!\underset{t\leq\xi\leq t+h_{2}}{\max}x(\xi)\big),\ t\in[a,b]\text{ and }i=\overline{1,3}.

Then x1(t)x2(t)x3(t),t[ah1,a][b,b+h2]x^{1}(t)\leq x^{2}(t)\leq x^{3}(t),\ \forall t\in[a-h_{1},a]\cup[b,b+h_{2}], implies x1x2x3x^{1}\leq x^{2}\leq x^{3}, i.e. the unique solution of the problem (1)–(2) is increasing with respect to f,φf,\ \varphi and ψ.\psi.

Proof. From Remark 3.2, the operators Efi,i=1,3¯,E_{f^{i}},i=\overline{1,3},\ are WPOs. From the condition (ii) the operator Ef2E_{f^{2}} is monotone increasing. From the condition (i) it follows that Ef1Ef2Ef3E_{f^{1}}\leq E_{f^{2}}\leq E_{f^{3}}. On the other hand, we notice that w~(x1)w~(x2)w~(x3)\widetilde{w}(x^{1})\leq\widetilde{w}(x^{2})\leq\widetilde{w}(x^{3}) and xi=Efi(w~(xi)),i=1,3¯x^{i}=E_{f^{i}}^{\infty}(\widetilde{w}(x^{i})),\ i=\overline{1,3}. So, the proof follows from Lemma 5.1.  

6 Data dependence: continuity

Consider the boundary value problem (1)–(2) and suppose that the conditions of the Theorem 3.1 are satisfied with the same Lipshitz constants. Denote by x(;φ,ψ,f)x^{\ast}(\cdot;\varphi,\psi,f)\ the solution of this problem. We get the data dependence result.

Theorem 6.1

Let φi,ψi,fi,i=1,2\varphi^{i},\psi^{i},f^{i},i=1,2 satisfy the conditions (C1)(C_{1})(C4)(C_{4}). Furthermore, we suppose that there exists ηi+m,i=1,2\eta_{i}\in\mathbb{R}_{+}^{m},i=1,2 such that

  1. (i)

    |φ1(t)φ2(t)|η1,t[ah1,a]\left|\varphi^{1}(t)-\varphi^{2}(t)\right|\leq\eta_{1},\ \forall t\in[a-h_{1},a] and |ψ1(t)ψ2(t)|η1,t[b,b+h2]\left|\psi^{1}(t)-\psi^{2}(t)\right|\leq\eta_{1},\ \forall t\in[b,b+h_{2}];

  2. (ii)

    |f1(t,u1,u2,u3)f2(t,u1,u2,u3)|η2,t[a,b],uim,i=1,2,3.\left|f^{1}(t,u^{1},u^{2},u^{3})-f^{2}(t,u^{1},u^{2},u^{3})\right|\leq\eta_{2},\ \forall t\in[a,b],u^{i}\in\mathbb{R}^{m},i=1,2,3.

Then

x(t;φ1,ψ1,f1)x(t;φ2,ψ2,f2)(IQ)1(2η1+MG(ba)η2),\left\|x^{\ast}(t;\varphi^{1},\psi^{1},f^{1})-x^{\ast}(t;\varphi^{2},\psi^{2},f^{2})\right\|\leq(I-Q)^{-1}(2\eta_{1}+M_{G}(b-a)\eta_{2}),

where x(t;φi,ψi,fi)x^{\ast}(t;\varphi^{i},\psi^{i},f^{i}) is the solution of the problem (1)–(2) with respect to φi,ψi,fi,i=1,2.\varphi^{i},\psi^{i},f^{i},\ i=1,2.

Proof. Consider the operators Bφi,ψi,fi,i=1,2.B_{\varphi^{i},\psi^{i},f^{i}},i=1,2. From Theorem 3.1 it follows that

Bφ1,ψ1,f1(x)Bφ1,ψ1,f1(y)Qxy,x,yX.\left\|B_{\varphi^{1},\psi^{1},f^{1}}(x)-B_{\varphi^{1},\psi^{1},f^{1}}(y)\!\right\|\leq Q\left\|x-y\right\|,\ \forall x,y\in X.

Additionally

Bφ1,ψ1,f1(x)Bφ2,ψ2,f2(x)2η1+MG(ba)η2,xX.\left\|B_{\varphi^{1},\psi^{1},f^{1}}(x)-B_{\varphi^{2},\psi^{2},f^{2}}(x)\!\right\|\leq 2\eta_{1}+M_{G}(b-a)\eta_{2},\ \forall x\in X.

We have

x(t;φ1,ψ1,f1)x(t;φ2,ψ2,f2)=\displaystyle\left\|x^{\ast}(t;\varphi^{1},\psi^{1},f^{1})-x^{\ast}(t;\varphi^{2},\psi^{2},f^{2})\right\|=
=Bφ1,ψ1,f1(x(t;φ1,ψ1,f1))Bφ2,ψ2,f2(x(t;φ2,ψ2,f2))\displaystyle=\left\|B_{\varphi^{1},\psi^{1},f^{1}}(x^{\ast}(t;\varphi^{1},\psi^{1},f^{1}))-B_{\varphi^{2},\psi^{2},f^{2}}(x^{\ast}(t;\varphi^{2},\psi^{2},f^{2}))\right\|\leq
Bφ1,ψ1,f1(x(t;φ1,ψ1,f1))Bφ1,ψ1,f1(x(t;φ2,ψ2,f2))+\displaystyle\leq\left\|B_{\varphi^{1},\psi^{1},f^{1}}(x^{\ast}(t;\varphi^{1},\psi^{1},f^{1}))-B_{\varphi^{1},\psi^{1},f^{1}}(x^{\ast}(t;\varphi^{2},\psi^{2},f^{2}))\right\|+
+Bφ1,ψ1,f1(x(t;φ2,ψ2,f2))Bφ2,ψ2,f2(x(t;φ2,ψ2,f2))\displaystyle\quad+\left\|B_{\varphi^{1},\psi^{1},f^{1}}(x^{\ast}(t;\varphi^{2},\psi^{2},f^{2}))-B_{\varphi^{2},\psi^{2},f^{2}}(x^{\ast}(t;\varphi^{2},\psi^{2},f^{2}))\right\|\leq
Qx(t;φ1,ψ1,f1)x(t;φ2,ψ2,f2)+2η1+MG(ba)η2,\displaystyle\leq Q\left\|x^{\ast}(t;\varphi^{1},\psi^{1},f^{1})-x^{\ast}(t;\varphi^{2},\psi^{2},f^{2})\right\|+2\eta_{1}+M_{G}(b-a)\eta_{2},

and since Qn0Q^{n}\rightarrow 0, as nn\rightarrow\infty, implies that (IQ)1Mm×m(+)(I-Q)^{-1}\in M_{m\times m}(\mathbb{R}_{+}), we finally obtain

x(t;φ1,ψ1,f1)x(t;φ2,ψ2,f2)(IQ)1(2η1+MG(ba)η2).\left\|x^{\ast}(t;\varphi^{1},\psi^{1},f^{1})-x^{\ast}(t;\varphi^{2},\psi^{2},f^{2})\right\|\leq(I-Q)^{-1}(2\eta_{1}+M_{G}(b-a)\eta_{2}).
 

Acknowledgements

The author is grateful to professor I. A. Rus for his helpful comments and suggestions.

References

  • [1] D. D. Bainov, N. G. Kazakova, A finite difference method for solving the periodic problem for autonomous differential equations with maxima, Math. J. Toyama Univ. 15(1992), pp. 1–13. 1195436
  • [2] D. D. Bainov, S. Hristova, Differential equations with maxima, Chapman & Hall/CRC Pure and Applied Mathematics, 2011.
  • [3] V. A. Dârzu, Data dependence for functional differential equations of mixed types, Mathematica (1) 46(69) (2004) 61–66. 2104023
  • [4] V. A. Dârzu Ilea, Mixed functional differential equation with parameter, Studia Univ. Babeş-Bolyai Math. (2) 50(2005) 29–41. 2245488
  • [5] T. Jankowski, System of differential equations with maxima, Dopov. Nats. Akad Nauk. Ukr. (8) (1997) 57–60.
  • [6] I. M. Olaru, An integral equation via weakly Picard operators, Fixed Point Theory (1) 11(2010) 97–106. 2656009
  • [7] I. M. Olaru, Generalization of an integral equation related to some epidemic models, Carpathian J. Math. (1) 26(2010) 92–96. 2676722
  • [8] D. Otrocol, I. A. Rus, Functional-differential equations with “maxima” via weakly Picard operators theory, Bull. Math. Soc. Sci. Math. Roumanie (3) 51(99)(2008) 253–261. 2433503
  • [9] D. Otrocol, I. A. Rus, Functional-differential equations with maxima, of mixed type, Fixed Point Theory (1), 9(2008) 207–220. 2421735
  • [10] A. I. Perov, A. V. Kibenko, On a general method to study boundary value problems, Iz. Akad. Nauk. 30(1966) 249–264. 0196534
  • [11] A. Petruşel, I. A. Rus, Fixed point theorems in LL-spaces, Proc. Amer. Math. Soc. (2), 134(2005) 411–418. 2176009
  • [12] R. Precup, The role of the matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Modelling (3–4) 49(2009) 703–708. 2483674
  • [13] I. A. Rus, Picard operators and applications, Sci. Math. Jpn. (1), 58(2003) 191–219. 1987831
  • [14] I. A. Rus, Functional differential equations of mixed type, via weakly Picard operators, Semin. Fixed Point Theory Cluj-Napoca 3(2002) 335–346. 1929779
  • [15] I. A. Rus, Generalized contractions and Applications, Cluj University Press, 2001. 1947742
  • [16] I. A. Rus, Weakly Picard operators and applications, Semin. Fixed Point Theory Cluj-Napoca, 2(2001) 41–57. 1921517
  • [17] I. A. Rus, A. Petruşel, M. A. Şerban, Weakly Picard operators: equivalent definitions, applications and open problems, Fixed Point Theory (1) 7(2006) 3–22. 2242312
2014

Related Posts