Qualitative properties of solutions for mixed type functional-differential equations with maxima

Abstract

In this paper we study some properties of the solutions of a second order system of functional-differential equations with maxima, of mixed type, with “boundary” conditions. We use the weakly Picard operator technique.

    Authors

    Diana Otrocol
    Technical University of Cluj-Napoca, Romania
    Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

    Keywords

    weakly Picard operator; equations of mixed type; equations with maxima

    References

    See the expanding block below.

    Paper coordinates

    D. Otrocol, Qualitative properties of solutions for mixed type functional-differential equations with maxima, Miskolc Mathematical Notes, 20 (2019) no. 2, pp. 1119–1128,
    DOI: 10.18514/MMN.2019.1946

    PDF

    not available yet.

    About this paper

    Journal

    Miskolc Mathematical Notes

    Publisher Name

    ?

    Print ISSN

    1787-2405

     

    Online ISSN

    1787-2413

    Google Scholar Profile

    google scholar

    [1] D. D. Bainov and S. G. Hristova, Differential equations with maxima. New York: Chapman & Hall/CRC Pure and Applied Mathematics, 2011.
    [2] D. D. Bainov and D. Mishev, Oscillation theory of operator-differential equations. Singapore: World Scientific, 1995.
    [3] L. Georgiev and V. G. Angelov, “On the existence and uniqueness of solutions for maximum equations.” Glas. Mat., vol. 37, no. 2, pp. 275–281, 2002.
    [4] D. Otrocol, “Systems of functional differential equations with maxima, of mixed type.” Electron. J. Qual. Theory Differ. Equ., vol. 2014, no. 5, pp. 1–9, 2014, doi: https://doi.org/10.14232/ejqtde.2014.1.5.
    [5] D. Otrocol and I. A. Rus, “Functional-differential equations with maxima of mixed type argument.” Fixed Point Theory, vol. 9, no. 1, pp. 207–220, 2008.
    [6] D. Otrocol and I. A. Rus, “Functional-differential equations with “maxima” via weakly Picard operators theory.” Bull. Math. Soc. Sci. Math. Roumanie, vol. 51(99), no. 3, pp. 253–261, 2008.
    [7] I. A. Rus, Generalized contractions and applications. Cluj-Napoca: Cluj University Press, 2001.
    [8] I. A. Rus, “Functional differential equations of mixed type, via weakly Picard operators.” Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, pp. 335–346, 2002.
    [9] I. A. Rus, “Picard operators and applications.” Sci. Math. Jpn., vol. 58, no. 1, pp. 191–219, 2003.
    [10] I. A. Rus, A. Petrus¸el, and M. A. S¸ erban, “Weakly Picard operators: equivalent definitions, applications and open problems.” Fixed Point Theory, vol. 7, no. 1, pp. 3–22, 2006.
    [11] B. Zhang and G. Zhang, “Qualitative properties of functional equations with “maxima”.” Rocky Mt. J. Math., vol. 29, no. 1, pp. 357–367, 1999

    Related Posts