Smooth dependence on parameters for a differential equation with delay from population dynamics

Abstract

Time delays occur in differential equation arising in many fields of applied mathematics: chemistry, ecology, biology, population dynamics, electric engineering. In population dynamics they may model the gestation or maturation time of a species, or time taken for food resources to regenerate. The purpose of this paper is to study the dependence on parameter for a differential system with delays from population dynamics using the theory of weakly Picard operators. The theory of weakly Picard operators is very useful in studying the properties of the solution of Volterra integral equations.

Authors

D. Otrocol
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Cite this paper as:

D. Otrocol, Smooth dependence on paramters for a differential equation with delay from population dynamics,  2007 International Conference on Engineering and Mathematics, Bilbao, July 9-11, 2007, pp. 3-10.

References

PDF

soon

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

MR

?

ZBL

?

[1] Muresan, I., Functional-Integral Equations,  Mediamira, Romania, 2003.

[2] Otrocol, D.,  Data Dependence for the Solution of a Lotka-Volterra System with two Delays, Mathematica, vol. 48, 71, 1, 61-68, 2006.

[3] Otrocol, D., Lotka-Volterra System with two Delays via Wealky Picard Operators,  Nonlinear Analysis Forum, 10, 2, 193-199, 2005.

[4] Rus, I. A.,  Generalized Contractions, Seminar of  Fixed Point Theory, “Babs-Bolyai” University, 1-130, 1983.

[5] Rus,  I. A., Functional-Differential Equation of Mixed Type, via Weakly Picard Operators, Seminar of Fixed Point Theory, vol. 3, 335-346, 2002.

[6] Rus, I. A., Generalized Contractions and Applications, Cluj University Press, Romania, 2001.

[7] Rus, I. A., Principles and Applications of the Fixed Point Theory,  Dacia, Romania, 1979.

[8] Serban, M. A., Fiber  ϕ-Contractions, Studia Univ. “Babs-Bolyai”, Mathematica, 44, 3, 99-108, 1999.

soon

SMOOTH DEPENDENCE ON PARAMETERS FOR A DIFFERENTIAL SYSTEM WITH DELAYS FROM POPULATION DYNAMICS

Diana Otrocol
Abstract.

The purpose of this paper is to present a differential systems with delays from population dynamics. For this system we study the smooth dependence on parameters for the solution of the systems using the fibre contraction principle.

1. Introduction

Time delays occur in differential equations arising in many fields of applied mathematics: chemistry, ecology, biology, population dynamics, electric engineering. In population dynamics they may model the gestation or maturation time of a species, or time taken for food resources to regenerate.

The purpose of this paper is to study the dependence on parameter λ\lambda for the solution of the problem:

(1) xi(t)=fi(t,x1(t;λ),x2(t;λ),x1(tτ1;λ),x2(tτ2;λ);λ),t[t0,b],i=1,2;\begin{split}x_{i}^{\prime}(t)=f_{i}(t,x_{1}(t;\lambda),x_{2}(t;\lambda),x_{1}(t-\tau_{1};&\lambda),x_{2}(t-\tau_{2};\lambda);\lambda),\\ &\;t\in[t_{0},b],\;i=1,2;\end{split}
(2) {x1(t)=φ(t),t[t0τ1,t0],x2(t)=ψ(t),t[t0τ2,t0],\left\{\begin{array}[c]{c}x_{1}(t)=\varphi(t),\;t\in[t_{0}-\tau_{1},t_{0}],\\ x_{2}(t)=\psi(t),\;t\in[t_{0}-\tau_{2},t_{0}],\end{array}\right.

Some problems concerning this techniques was study in [4], [5], [6], [1], [8].

2. Weakly Picard operators

I.A. Rus introduced the Picard operators class (PO) and the weakly Picard operators class (WPO) for the operators defined on a metric space and he gave basic notations, definitions and results in this field in many papers [4][6].

Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. We shall use the following notations:

FA:={xXA(x)=x}F_{A}:=\{x\in X\mid A(x)=x\} - the fixed point set of AA;

I(A):={YXA(Y)Y,Y}I(A):=\{Y\subset X\mid A(Y)\subset Y,Y\neq\emptyset\} - the family of the nonempty invariant subset of AA;

An+1:=AAn,A0=1X,A1=A,nA^{n+1}:=A\circ A^{n},\;A^{0}=1_{X},\;A^{1}=A,\;n\in\mathbb{N};

P(X):={YXY}P(X):=\{Y\subset X\mid Y\neq\emptyset\} - the set of the parts of X;X;

Definition 1.

Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a Picard operator (PO) if there exists xXx^{\ast}\in X such that:

  1. (i)

    FA={x},F_{A}=\{x^{\ast}\},

  2. (ii)

    the sequence (An(x0))n(A^{n}(x_{0}))_{n\in\mathbb{N}} converges to xx^{\ast} for all x0Xx_{0}\in X.

Remark 1.

Accordingly to the definition, the contraction principle insures that, if A:XXA:X\rightarrow X is an α\alpha -contraction on the complete metric space XX, then it is a Picard operator.

Definition 2.

Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a weakly Picard operator (WPO) if the sequence (An(x))n(A^{n}(x))_{n\in\mathbb{N}} converges for all xXx\in X, and its limit ( which may depend on xx ) is a fixed point of AA.

Theorem 1.

Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. The operator AA is weakly Picard operator if and only if there exists a partition of XX,

X=λΛXλX=\underset{\lambda\in\Lambda}{\cup}X_{\lambda}

where Λ\Lambda is the indices set of partition, such that:

  1. (a)

    XλI(A),λΛX_{\lambda}\in I(A),\ \lambda\in\Lambda;

  2. (b)

    A|Xλ:XλXλA|_{X_{\lambda}}:X_{\lambda}\rightarrow X_{\lambda} is a Picard operator for all λΛ\lambda\in\Lambda.

Definition 3.

If AA is weakly Picard operator then we consider the operator AA^{\infty} defined by

A:XX,A(x):=limnAn(x).A^{\infty}:X\rightarrow X,\ A^{\infty}(x):=\underset{n\rightarrow\infty}{\lim}A^{n}(x).

It is clear that A(X)=FA.A^{\infty}(X)=F_{A}.

Definition 4.

Let AA be a weakly Picard operator and c>0.c>0. The operator AA\ is cc -weakly Picard operator if

d(x,A(x))cd(x,A(x)),xX.d(x,A^{\infty}(x))\leq cd(x,A(x)),\ \forall x\in X.
Example 1.

Let (X,d)(X,d) be a complete metric space and A:XXA:X\rightarrow X a continuous operator. We suppose that there exists α[0,1)\alpha\in[0,1) such that

d(A2(x),A(x))α(x,A(x)),xX.d(A^{2}(x),A(x))\leq\alpha(x,A(x)),\ \forall x\in X.

Then AA is cc -weakly Picard operator with c=11α.c=\dfrac{1}{1-\alpha}.

Theorem 2.

(Fibre contraction principle). Let (X,d)(X,d) and (Y,ρ)(Y,\rho) be two metric spaces and A:X×YX×Y,A=(B,C),(B:XX,C:X×YY)A:X\times Y\rightarrow X\times Y,\ A=(B,C),\ (\ B:X\rightarrow X,\ C:X\times Y\rightarrow Y\ ) a triangular operator. We suppose that

  1. (i)

    (Y,ρ)(Y,\rho) is a complete metric space;

  2. (ii)

    the operator BB is Picard operator;

  3. (iii)

    there exists l[0,1)l\in[0,1) such that C(x,):YYC(x,\cdot):Y\rightarrow Y is a ll-contraction, for all xXx\in X;

  4. (iv)

    if (x,y)FA(x^{\ast},y^{\ast})\in F_{A}, then C(,y)C(\cdot,y^{\ast}) is continuous in xx^{\ast}.

Then the operator AA is Picard operator.

3. Main results

Consider the following problem with parameter

(3) xi(t)=fi(t,x1(t),x2(t),x1(tτ1),x2(tτ2);λ),t[t0,b],i=1,2,\begin{split}x_{i}^{\prime}(t)=f_{i}(t,x_{1}(t),x_{2}(t),x_{1}(t-&\tau_{1}),x_{2}(t-\tau_{2});\lambda),\\ &\;t\in[t_{0},b],\;i=1,2,\end{split}
(4) {x1(t)=φ(t),t[t0τ1,t0],x2(t)=ψ(t),t[t0τ2,t0].\left\{\begin{array}[c]{c}x_{1}(t)=\varphi(t),\;t\in[t_{0}-\tau_{1},t_{0}],\\ x_{2}(t)=\psi(t),\;t\in[t_{0}-\tau_{2},t_{0}]\end{array}\right..

We suppose that

(H1)τ1τ2;t0<b;J(H_{1})\;\tau_{1}\leq\tau_{2};\;t_{0}<b;\;J\subset\mathbb{R}, a compact interval;

(H2)fiC1([t0,b]×4×J),i=1,2(H_{2})\;f_{i}\in C^{1}([t_{0},b]\times\mathbb{R}^{4}\times J),\;i=1,2;

(H3)Lf>0(H_{3})\;\exists L_{f}>0 such that fiuj(t,u1,u2,u3,u4;λ)nLf,\left\|\dfrac{\partial f_{i}}{\partial u_{j}}(t,u_{1},u_{2},u_{3},u_{4};\lambda)\right\|_{\mathbb{R}^{n}}\leq L_{f},\;\newline for allt[t0,b],ujRn,j=1,4¯,λJ,i=1,2\ t\in[t_{0},b],\;u_{j}\in R^{n},\;j=\overline{1,4},\;\lambda\in J,i=1,2;

(H4)φC([t0τ1,t0]),ψC([t0τ2,t0])(H_{4})\;\varphi\in C([t_{0}-\tau_{1},t_{0}]),\;\psi\in C([t_{0}-\tau_{2},t_{0}]);

We have

Theorem 3.

([2]) We suppose that the conditions (H1H_{1})-(H4H_{4}) are satisfied.

Then the problem (3)–(4) has a unique solution. Moreover, if (x1,x2)(x_{1}^{\ast},x_{2}^{\ast}) the unique solution of (3)–(4), then

(x1,x2)=limnAfn(x1,x2),for all x1C[t0τ1,b]x2C[t0τ2,b].(x_{1}^{\ast},x_{2}^{\ast})=\underset{n\rightarrow\infty}{\lim}A_{f}^{n}(x_{1},x_{2}),\;\text{for all }x_{1}\in C[t_{0}-\tau_{1},b]\text{, }x_{2}\in C[t_{0}-\tau_{2},b].

From the Theorem 3, in [2], we have that the problem (3)–(4) has a unique solution, (x1(t;λ),x2(t;λ))(x_{1}(t;\lambda),x_{2}(t;\lambda)).

Now we prove that

x1(t;)\displaystyle x_{1}(t;\cdot) C1(J), for all t[t0τ1,b],\displaystyle\in C^{1}(J)\text{, for all }t\in[t_{0}-\tau_{1},b],
x2(t;)\displaystyle x_{2}(t;\cdot) C1(J), for all t[t0τ2,b].\displaystyle\in C^{1}(J)\text{, for all }t\in[t_{0}-\tau_{2},b].

For this we consider the system

(5) xi(t)=fi(t,x1(t;λ),x2(t;λ),x1(tτ1;λ),x2(tτ2;λ);λ),x_{i}^{\prime}(t)=f_{i}(t,x_{1}(t;\lambda),x_{2}(t;\lambda),x_{1}(t-\tau_{1};\lambda),x_{2}(t-\tau_{2};\lambda);\lambda),

where t[t0,b],λJ,x1C([t0τ1,b]×J)C1[t0,b],x2C([t0τ2,b]×J)C1[t0,b]\;t\in[t_{0},b],\;\lambda\in J,x_{1}\in C([t_{0}-\tau_{1},b]\times J)\cap C^{1}[t_{0},b],\;x_{2}\in C([t_{0}-\tau_{2},b]\times J)\cap C^{1}[t_{0},b].

Theorem 4.

Consider the problem (5)–(4), in the conditions (H1)(H4)(H_{1})-(H_{4}). Then the problem (5)–(4) has a unique solution (x1,x2),x1C([t0τ1,b]×J)C1[t0,b],x2C([t0τ2,b]×J)C1[t0,b](x_{1}^{\ast},x_{2}^{\ast}),\;x_{1}^{\ast}\in C([t_{0}-\tau_{1},b]\times J)\cap C^{1}[t_{0},b],\;x_{2}^{\ast}\in C([t_{0}-\tau_{2},b]\times J)\cap C^{1}[t_{0},b] and the solution is derivable on λ\lambda.

Proof.

The problem (5)–(4) is equivalent with

(6) x1(t)={φ(t),t[t0τ1,t0],φ(t0)++t0tf1(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)ds,t[t0,b],λJ,x2(t)={ψ(t),t[t0τ2,t0],ψ(t0)++t0tf2(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)ds,t[t0,b],λJ.\begin{array}[c]{l}x_{1}(t)=\left\{\begin{array}[c]{l}\varphi(t),\;t\in[t_{0}-\tau_{1},t_{0}],\\ \varphi(t_{0})+\\ +\int\nolimits_{t_{0}}^{t}f_{1}(s,x_{1}(s;\lambda),x_{2}(s;\lambda),x_{1}(s-\tau_{1};\lambda),x_{2}(s-\tau_{2};\lambda);\lambda)\mathrm{d}s,\\ \;\;\;\;\;\;\;t\in[t_{0},b],\lambda\in J,\end{array}\right.\\ x_{2}(t)=\left\{\begin{array}[c]{l}\psi(t),\;t\in[t_{0}-\tau_{2},t_{0}],\\ \psi(t_{0})+\\ +\int\nolimits_{t_{0}}^{t}f_{2}(s,x_{1}(s;\lambda),x_{2}(s;\lambda),x_{1}(s-\tau_{1};\lambda),x_{2}(s-\tau_{2};\lambda);\lambda)\mathrm{d}s,\\ \;\;\;\;\;\;\;t\in[t_{0},b],\lambda\in J.\end{array}\right.\end{array}

We consider the operator

Bf:C([t0τ1,b]×J)×C([t0τ2,b]×J)C([t0τ1,b]×J)×C([t0τ2,b]×J)\begin{array}[c]{l}B_{f}:C([t_{0}-\tau_{1},b]\times J)\times C([t_{0}-\tau_{2},b]\times J)\rightarrow\\ \rightarrow C([t_{0}-\tau_{1},b]\times J)\times C([t_{0}-\tau_{2},b]\times J)\end{array}

where Bf(x1,x2)B_{f}(x_{1},x_{2}) is defined by the second part of (6).

Let X:=C([t0τ1,b]×J)×C([t0τ2,b]×J)X:=C([t_{0}-\tau_{1},b]\times J)\times C([t_{0}-\tau_{2},b]\times J) and let, \left\|\cdot\right\|, be the Chebyshev norm on XX. It is clear that, in the conditions (H1)(H4)(H_{1})-(H_{4}), the operator BfB_{f} is Picard operator (Remark 6,[2]). Let (x1,x2)(x_{1}^{*},x_{2}^{*}) be the unique fixed point of BfB_{f}.

We suppose that there exists x1λ\dfrac{\partial x_{1}}{\partial\lambda}, x2λ\dfrac{\partial x_{2}}{\partial\lambda}. Then from (6) we have that:

xi(t;λ)λ==t0tfi(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)x1(s;λ)x1(s,λ)λ𝑑s+t0tfi(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)x2(s;λ)x2(s,λ)λ𝑑s+t0tfi(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)x1(sτ1;λ)x1(sτ1,λ)λ𝑑s+t0tfi(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)x1(sτ2;λ)x1(sτ2,λ)λ𝑑s,\begin{split}&\frac{\partial x_{i}^{*}(t;\lambda)}{\partial\lambda}=\\ &=\int_{t_{0}}^{t}\frac{\partial f_{i}(s,x_{1}^{*}(s;\lambda),x_{2}^{*}(s;\lambda),x_{1}^{*}(s-\tau_{1};\lambda),x_{2}^{*}(s-\tau_{2};\lambda);\lambda)}{\partial x_{1}^{*}(s;\lambda)}\cdot\frac{\partial x_{1}^{*}(s,\lambda)}{\partial\lambda}ds\\ &+\int_{t_{0}}^{t}\frac{\partial f_{i}(s,x_{1}^{*}(s;\lambda),x_{2}^{*}(s;\lambda),x_{1}^{*}(s-\tau_{1};\lambda),x_{2}^{*}(s-\tau_{2};\lambda);\lambda)}{\partial x_{2}^{*}(s;\lambda)}\cdot\frac{\partial x_{2}^{*}(s,\lambda)}{\partial\lambda}ds\\ &+\int_{t_{0}}^{t}\frac{\partial f_{i}(s,x_{1}^{*}(s;\lambda),x_{2}^{*}(s;\lambda),x_{1}^{*}(s-\tau_{1};\lambda),x_{2}^{*}(s-\tau_{2};\lambda);\lambda)}{\partial x_{1}^{*}(s-\tau_{1};\lambda)}\cdot\frac{\partial x_{1}^{*}(s-\tau_{1},\lambda)}{\partial\lambda}ds\\ &+\int_{t_{0}}^{t}\frac{\partial f_{i}(s,x_{1}^{*}(s;\lambda),x_{2}^{*}(s;\lambda),x_{1}^{*}(s-\tau_{1};\lambda),x_{2}^{*}(s-\tau_{2};\lambda);\lambda)}{\partial x_{1}^{*}(s-\tau_{2};\lambda)}\cdot\frac{\partial x_{1}^{*}(s-\tau_{2},\lambda)}{\partial\lambda}ds,\end{split}

where t[t0,b],λJ,i=1,2.t\in[t_{0},b],\;\lambda\in J,\;i=1,2.

This relations suggests us to consider the operator Cf:X×XXC_{f}:X\times X\rightarrow X defined by

Cf(x1,x2,u,v)(t,λ):==t0tfi(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)u1u(s;λ)𝑑s+t0tfi(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)u2v(s;λ)𝑑s+t0tfi(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)u3u(sτ1;λ)𝑑s+t0tfi(s,x1(s;λ),x2(s;λ),x1(sτ1;λ),x2(sτ2;λ);λ)u4u(sτ2;λ)𝑑s.\begin{split}C_{f}&(x_{1},x_{2},u,v)(t,\lambda):=\\ &=\int_{t_{0}}^{t}\frac{\partial f_{i}(s,x_{1}^{*}(s;\lambda),x_{2}^{*}(s;\lambda),x_{1}^{*}(s-\tau_{1};\lambda),x_{2}^{*}(s-\tau_{2};\lambda);\lambda)}{\partial u_{1}}\cdot u(s;\lambda)ds\\ &+\int_{t_{0}}^{t}\frac{\partial f_{i}(s,x_{1}^{*}(s;\lambda),x_{2}^{*}(s;\lambda),x_{1}^{*}(s-\tau_{1};\lambda),x_{2}^{*}(s-\tau_{2};\lambda);\lambda)}{\partial u_{2}}\cdot v(s;\lambda)ds\\ &+\int_{t_{0}}^{t}\dfrac{\partial f_{i}(s,x_{1}^{*}(s;\lambda),x_{2}^{*}(s;\lambda),x_{1}^{*}(s-\tau_{1};\lambda),x_{2}^{*}(s-\tau_{2};\lambda);\lambda)}{\partial u_{3}}\cdot u(s-\tau_{1};\lambda)ds\\ &+\int_{t_{0}}^{t}\frac{\partial f_{i}(s,x_{1}^{*}(s;\lambda),x_{2}^{*}(s;\lambda),x_{1}^{*}(s-\tau_{1};\lambda),x_{2}^{*}(s-\tau_{2};\lambda);\lambda)}{\partial u_{4}}\cdot u(s-\tau_{2};\lambda)ds.\end{split}
Cf(x1,x2,u,v)(t,λ)\displaystyle C_{f}(x_{1},x_{2},u,v)(t,\lambda) :=0 for all t[t0τ1,t0],λJ,\displaystyle:=0\text{ for all }t\in[t_{0}-\tau_{1},t_{0}],\;\lambda\in J,
Cf(x1,x2,u,v)(t,λ)\displaystyle C_{f}(x_{1},x_{2},u,v)(t,\lambda) :=0for all t[t0τ2,t0],λJ.\displaystyle:=0\;\text{for all }t\in[t_{0}-\tau_{2},t_{0}],\;\lambda\in J.

In this way we have the triangular operator

A:X×XX×XA:X\times X\rightarrow X\times X
(x1,x2,u,v)(Bf(x1,x2),Cf(x1,x2,u,v))(x_{1},x_{2},u,v)\rightarrow(B_{f}(x_{1},x_{2}),C_{f}(x_{1},x_{2},u,v))

where BfB_{f} is a Picard operator and Cf(x1,x2,,):XXC_{f}(x_{1},x_{2},\cdot,\cdot):X\rightarrow X is an α\alpha-contraction, with α=4Lfρ\alpha=\dfrac{4L_{f}}{\rho}.

From the theorem of fibre contraction we have that the operator AA is a Picard operator and FA=(x1,x2,u,v)F_{A}={(x_{1}^{*},x_{2}^{*},u^{*},v^{*})}.

Let (x1,x2,u,v)(x_{1}^{*},x_{2}^{*},u^{*},v^{*}) be the unique fixed point of the operator AA. So, the sequences

(x1,n+1,x2,n+1):=B(x1,n,x2,n)(un+1,vn+1):=C(x1,n,x2,n,un,vn),n\begin{array}[c]{l}(x_{1,n+1},x_{2,n+1}):=B(x_{1,n},x_{2,n})\\ (u_{n+1},v_{n+1}):=C(x_{1,n},x_{2,n},u_{n},v_{n})\end{array},n\in\mathbb{N}

converges uniformly (with respect to tX,λJt\in X,\;\lambda\in J) to (x1,x2,u,v)FA(x_{1}^{*},x_{2}^{*},u^{*},v^{*})\in F_{A}, for all x1,0,x2,0,u0,v0Xx_{1,0},x_{2,0},u_{0},v_{0}\in X

If we take x1,0=0,x2,0=0,u0=x1,0λ=0,v0=x2,0λ=0x_{1,0}=0,\;x_{2,0}=0,\;u_{0}=\dfrac{\partial x_{1,0}}{\partial\lambda}=0,\;v_{0}=\dfrac{\partial x_{2,0}}{\partial\lambda}=0, then

u1=x1,1λ,v1=x2,1λ.u_{1}=\frac{\partial x_{1,1}}{\partial\lambda},\;v_{1}=\frac{\partial x_{2,1}}{\partial\lambda}.

By induction we prove that

un=x1,nλ,vn=x2,nλ,n.u_{n}=\frac{\partial x_{1,n}}{\partial\lambda},\;v_{n}=\frac{\partial x_{2,n}}{\partial\lambda},\;\forall n\in\mathbb{N}.

Thus

x1,n\displaystyle x_{1,n} unifx1 as n,\displaystyle\overset{unif}{\rightarrow}x_{1}^{*}\text{ as }n\rightarrow\infty,
x2,n\displaystyle x_{2,n} unifx2 as n,\displaystyle\overset{unif}{\rightarrow}x_{2}^{*}\text{ as }n\rightarrow\infty,
x1,nλ\displaystyle\frac{\partial x_{1,n}}{\partial\lambda} unifu as n,\displaystyle\overset{unif}{\rightarrow}u^{*}\text{ as }n\rightarrow\infty,
x2,nλ\displaystyle\frac{\partial x_{2,n}}{\partial\lambda} unifv as n.\displaystyle\overset{unif}{\rightarrow}v^{*}\text{ as }n\rightarrow\infty.

By Weierstrass’ theorem it follows that there exists xiλ,i=1,2\dfrac{\partial x_{i}^{*}}{\partial\lambda},\;i=1,2 and

x1λ=u , x2λ=v .\frac{\partial x_{1}^{*}}{\partial\lambda}=u^{*}\text{ ,\ }\frac{\partial x_{2}^{*}}{\partial\lambda}=v^{*}\text{ .}

From the above consideration, we have the theorem proved. ∎

References

  • [1] Mureşan, V., Functional-Integral Equations, Editura Mediamira, Cluj-Napoca, 2003.
  • [2] Otrocol, D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, vol. 48, 71, 1, 61-68, 2006.
  • [3] Otrocol, D., Lotka-Volterra system with two delays via weakly Picard operators, Nonlinear Analysis Forum, 10, 2, 193-199, 2005.
  • [4] Rus, I.A., Generalized contractions, Seminar of Fixed Point Theory, ”Babeş-Bolyai” University, 1-130, 1983.
  • [5] Rus, I.A., Functional-differential equation of mixed type, via weakly Picard operators, Seminar of Fixed Point Theory, Cluj-Napoca, vol. 3, 335-346, 2002.
  • [6] Rus, I.A., Generalized Contractions and Applications, Cluj University Press, 2001.
  • [7] Rus, I.A., Principii si aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
  • [8] Şerban, M.A., Fiber φ\varphi-contractions, studia Univ. ”Babeş-Bolyai”, Mathematica, 44, 3, 99-108, 1999.
2007

Related Posts