[1] Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E. and Sadovskii, B.N., Measures of Noncompactness and Condensing Operators, Birkh¨auser, Basel, 1992.
[2] Ambrosetti, A., Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39 (1967), 349–360.
[3] Appell, J., Implicit functions, nonlinear integral equations and the measure of noncompactness of the superposition operator, J. Math. Anal. Appl., 83 (1981), 251–263.
[4] Appell, J., Measure of noncompactness, condensing operators and fixed points: an application-oriented survey, Fixed Point Theory, 6 (2005), 157–229.
[5] Banas, J. and Goebel, K., Measure of Noncompactness in Banach Spaces, M. Dekker, New York, 1980.
[6] Brown, R.F., Retraction methods in Nielson fixed point theory, Pacific J. Math., 115 (1984), 277–297.
[7] Deimling, K., Nonlinear Functional Analysis, Springer, Berlin, 1985.
[8] De Pascale, E., Trombetta, G. and Weber, H., Convexly totally bounded and strongly totally bounded sets. Solution of a problem of Idzik, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 20 (1993), 341–355.
[9] Fort, M.K., Essential and nonessential fixed points, Amer. J. Math., 72 (1950), 315–322.
[10] Granas, A., Points fixes pour les applications compactes:espaces de Lefschetz et la theorie de l’indice, Les Presses de l’Universit´e de Montr´eal, 1980.
[11] Guo, D., Lakshmikantham, V. and Liu, X., Nonlinear Integral Equations in Abstract Cones, Kluwer, Dordrecht, 1996.
[12] Heinz, H.P., On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351–1371.
[13] Meehan, M. and O’Regan, D., Existence theory for nonlinear Fredholm and Volterra integral equations on half-open intervals, Nonlinear Anal., 35 (1999), 355–387.
[14] Niculescu, C.P. and Roventa, I., Schauder fixed point theorem in spaces with global nonpositive curvature, Fixed Point Theory Appl., 2009, Article ID906727, 8 pages.
[15] O’Regan, D. and Precup, R., Existence criteria for integral equations in Banach spaces, J. Inequal. Appl., 6 (2001), 77–97.
[16] O’Regan, D. and Precup, R., Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.
[17] O’Regan, D. and Precup, R., Existence theory for nonlinear operator equations of Hammerstein type in Banach spaces, Dynam. Systems Appl., 14 (2005), 121–134.
[18] Petryshyn, W.P., Fixed point theorems for various classes of 1-set-contractive and 1-ball contractive mappings in Banach spaces, Trans. Amer. Math. Soc., 182 (1973), 323–352.
[19] Precup, R., Methods in Nonlinear Integral Equations, Kluwer, Dordrecht, 2002.
[20] Rus, I.A., A general fixed point principle, Seminar on Fixed Point Theory, Cluj-Napoca, 1985, 69–76.
[21] Rus, I.A., Fixed Point Structure Theory, Cluj University Press, 2006.
[22] Rus, I.A., Five open problems in fixed point theory in terms of fixed point structures (I): singlevalued operators, Proc. 10th IC-FPTA, Cluj-Napoca, 2013, 39–60.
[23] Williamson, T.E., A geometric approach to fixed points of non-self mappings T : D → X, Contemp. Math., 18 (1983), 247–253.