[1] V. Kolmanovskiĭ and A. Myshkis, Applied Theory of Functional-Differential Equations, Kluwer Academic Publishers Group, Dordrecht, Germany, 1992.
[2] E. Pinney, Ordinary Difference-Differential Equations, University of California Press, Berkeley, Calif, USA, 1958.
[3] V. V. Guljaev, A. S. Dmitriev, and V. E. Kislov, “Strange attractors in the circle: selfoscillating systems,” Doklady Akademii Nauk SSSR, vol. 282, no. 2, pp. 53–66, 1985.
[4] V. B. Kolmanovskiĭ and V. R. Nosov, Stability of Functional-Differential Equations, Academic Press, London, UK, 1986.
[5] V. A. Ilea and D. Otrocol, “On a D. V. Ionescu’s problem for functional-differential equations,” Fixed Point Theory, vol. 10, no. 1, pp. 125–140, 2009.
[6] I. M. Olaru, “An integral equation via weakly Picard operators,” Fixed Point Theory, vol. 11, no. 1, pp. 97–106, 2010.
[7] I. M. Olaru, “Data dependence for some integral equations,” Studia. Universitatis Babeş-Bolyai. Mathematica, vol. 55, no. 2, pp. 159–165, 2010.
[8] D. Otrocol and V. Ilea, “Ulam stability for a delay differential equation,” Central European Journal of Mathematics, vol. 11, no. 7, pp. 1296–1303, 2013.
[9] R. Precup, “The role of matrices that are convergent to zero in the study of semilinear operator systems,” Mathematical and Computer Modelling, vol. 49, no. 3-4, pp. 703–708, 2009.
[10] I. A. Rus, Principles ans Applications of the Fixed Point Theory, Dacia, Cluj-Napoca, Romania, 1979, Romanian.
[11] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, Romania, 2001.
[12] I. A. Rus, “Functional-differential equations of mixed type, via weakly Picard operators,” Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, pp. 335–345, 2002.
[13] I. A. Rus, “Picard operators and applications,” Scientiae Mathematicae Japonicae, vol. 58, no. 1, pp. 191–219, 2003.
[14] I. A. Rus, “Gronwall lemmas: ten open problems,” Scientiae Mathematicae Japonicae, vol. 70, no. 2, pp. 221–228, 2009.
[15] I. A. Rus, “Ulam stability of ordinary differential equations,” Studia. Universitatis Babeş-Bolyai. Mathematica, vol. 54, no. 4, pp. 125–133, 2009.
[16] I. A. Rus, “Remarks on Ulam stability of the operatorial equations,” Fixed Point Theory, vol. 10, no. 2, pp. 305–320, 2009.
[17] I. A. Rus, “Ulam stability of the operatorial equations,” in Functional Equations in Mathematical Analysis, T. M. Rassias and J. Brzdek, Eds., chapter 23, Springer, 2011.
[18] A. I. Perov and A. V. Kibenko, “On a general method to study boundary value problems,” Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 30, pp. 249–264, 1966.