## Abstract

In this paper we study some properties of the solutions of a second order system of functional differential equations with maxima, of mixed type, with “boundary” conditions. We use Perov’s fixed point theorem and the weakly Picard operator technique.

## Authors

D. **Otrocol**

(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,

## Keywords

Perov’s fixed point theorem, weakly Picard operator, equations of mixed type, equations with maxima.

## Cite this paper as:

D. Otrocol, *Systems of functional differential equations with maxima, of mixed type*, Electron. J. Qual. Theory Differ. Equ., Vol. 2014 (2014), No. 5, pp. 1–9;

## About this paper

##### Journal

Electronic Journal of Qualitative Theory of Differential Equations

##### Publisher Name

Univ. Szeged, Hungary

##### DOI

##### Print ISSN

1417-3875

##### Online ISSN

##### MR

MR3183603

##### ZBL

## Google Scholar

## References

## Paper in html format

## References

[1] D. D. BAINOV, N. G. KAZAKOVA, *A finite difference method for solving the periodic problem for autonomous differential equations with maxima*, Math. J. Toyama Univ. 15(1992), 1–13. MR1195436

[2] D. D. BAINOV, S. HRISTOVA, *Differential equations with maxima*, Chapman & Hall/CRC Pure and Applied Mathematics, 2011.

[3] V. A. DÂRZU, *Data dependence for functional differential equations of mixed types*, Mathematica 46(2004), 61–66. MR2104023

[4] V. A. DÂRZU ILEA, *Mixed functional differential equation with parameter*, Studia Univ. Babes–Bolyai Math. 50(2005), 29–41. MR2245488

[5] T. JANKOWSKI*, System of differential equations with maxima*, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 1997, No. 8, 57–60. MR1673703

[6] I. M. OLARU, *An integral equation via weakly Picard operators,* Fixed Point Theory 11(2010), 97–106. MR2656009

[7] I. M. OLARU, *Generalization of an integral equation related to some epidemic models,* Carpathian J. Math. 26(2010), 92–96. MR2676722

[8] D. OTROCOL, I. A. RUS, *Functional-differential equations with “maxima” via weakly Picard operators theory*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 51(2008), 253–261. MR2433503

[9] D. OTROCOL, I. A. RUS, *Functional-differential equations with maxima, of mixed type*, Fixed Point Theory 9(2008), 207–220. MR2421735

[10] A. I. PEROV, A. V. KIBENKO, *On a certain general method for investigation of boundary value problems*, Izv. Akad. Nauk SSSR Ser. Mat. 30(1966), 249–264. MR0196534

[11] A. PETRUSEL, I. A. RUS, *Fixed point theorems in L-spaces*, Proc. Amer. Math. Soc. 134(2006), 411–418. MR2176009

[12] R. PRECUP, *The role of the matrices that are convergent to zero in the study of semilinear operator systems*, Math. Comput. Modelling 49(2009), 703–708. MR2483674

[13] I. A. RUS, *Picard operators and applications*, Sci. Math. Jpn. 58(2003), 191–219. MR1987831

[14] I. A. RUS, *Functional differential equations of mixed type, via weakly Picard operators,* Semin. Fixed Point Theory Cluj-Napoca 3(2002), 335–346. MR1929779

[15] I. A. RUS, *Generalized contractions and applications*, Cluj University Press, 2001. MR1947742

[16] I. A. RUS, *Weakly Picard operators and applications*, Semin. Fixed Point Theory Cluj-Napoca 2(2001), 41–57. MR1921517

[17] I. A. RUS, A. PETRUSEL, M. A. SERBAN, *Weakly Picard operators: equivalent definitions, applications and open problems*, Fixed Point Theory 7(2006), 3–22. MR2242312