[1] M.P. Anselone and L.B. Rall,
The solution of characteristic value-vector problems by Newton method, Numer. Math., 11(1968), pp. 38–45.
[2] I.K. Argyros, Quadratic equations and applications to Chandrasekhar’s and related equations , Bull. Austral. Math. Soc., 38 (1988), pp. 275–292.
[3] E. Catinas and I. Pavaloiu, On the Chebyshev method for approximating the eigenvalues of linear operators, Rev. Anal. Numer. Theor. Approx., 25 (1996) nos. 1–2, pp. 43-56.
[4] E. Catinas and I. Pavaloiu, On a Chebyshev-type method for approximating the solutions of polynomial operator equations of degree 2, Proceedings of International Conference on Approximation and Optimization, Cluj-Napoca, July 29 – august 1, 1996, vol. 1, pp. 219-226.
[5] E. Catinas and I. Pavaloiu, On approximating the eigenvalues and eigenvectors of linear continuous operators, Rev. Anal. Numer. Theor. Approx., 26 (1997) nos. 1–2, pp. 19–27.
[6] E. Catinas and I. Pavaloiu, On some interpolatory iterative methods for the second degree polynomial operators (I), Rev. Anal. Numer. Theor. Approx., 27(1998) no. 1, pp. 33-45.
[7] E. Catinas and I. Pavaloiu, On some interpolatory iterative methods for the second degree polynomial operators (II) , Rev. Anal. Numer. Theor. Approx., 28 (1999) no. 2, pp. 133-143.
[8] L. Collatz, Functionalanalysis und Numerische Mathematik, Springer-Verlag, Berlin,1964.
[9] A. Diaconu, On the convergence of an iterative method of Chebyshev type, Rev. Anal. Numer. Theor. Approx. 24 (1995) nos. 1–2, pp. 91–102.
[10] J.J. Dongarra, C.B. Moler and J.H. Wilkinson, Improving the accuracy of the computed eigenvalues and eigenvectors , SIAM J. Numer. Anal., 20 (1983) no. 1, pp. 23–45.
[11] S.M. Grzegorski, On the scaled Newton method for the symmetric eigenvalue problem, Computing, 45 (1990), pp. 277–282.
[12] V.S. Kartisov and F.L. Iuhno, O nekotorih Modifikat ̧ah Metoda Niutona dlea Resenia Nelineinoi Spektralnoi Zadaci, J. Vicisl. matem. i matem. fiz., 33 (1973) no. 9, pp. 1403–1409 (in Russian).
[13] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables , Academic Press, New York, 1970.
[14] I. Pavaloiu, Sur les procedes iteratifs a un order eleve de convergence, Mathematica (Cluj), 12 (35) (1970) no. 2, pp. 309–324.
[15] Pavaloiu, I., Introduction to the Theory of Approximating the Solutions of Equations, Ed. Dacia, Cluj-Napoca, Romania, 1986 (in Romanian).
[16] I. Pavaloiu and E. Catinas, Remarks on some Newton and Chebyshev-type methods for approximating the eigenvalues and eigenvectors of matrices, Computer Science Journal of Moldova, 7(1999) no. 1, pp. 3–17.
[17] G. Peters and J.H. Wilkinson, Inverse iteration, ill-conditioned equations and Newton’s method, SIAM Review, 21(1979) no. 3, pp. 339–360.
[18] M.C. Santos, A note on the Newton iteration for the algebraic eigenvalue problem, SIAM J. Matrix Anal. Appl., 9 (1988) no. 4, pp. 561–569.
[19] R.A. Tapia and L.D. Whitley, The projected Newton method has order 1+√2 for the symmetric eigenvalue problem, SIAM J. Numer. Anal., 25 (1988) no. 6, pp. 1376–1382.
[20] F. Tisseur, Newton’s method in floating point arithmetic and iterative refinement of generalized eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2001) no. 4, pp. 1038–1057.
[21] K. Wu, Y. Saad and A. Stathopoulos, Inexact Newton preconditioning techniques for large symmetric eigenvalue problems, Electronic Transactions on Numerical Analysis, 7 (1998) pp. 202–214.
[22] T. Yamamoto, Error bounds for computed eigenvalues and eigenvectors, Numer. Math., 34 (1980), pp. 189–199.