Abstract
Unsteady two-dimensional boundary layer flow and heat transfer over a stretching flat plate in a viscous and incompressible fluid of uniform ambient temperature is investigated in this paper. It is assumed that the plate is isothermal and is stretched in its own plane. Using appropriate similarity variables, the basic partial differential equations are transformed into a set of two ordinary differential equations. These equations are solved numerically for some values of the governing parameters, using Rungge-Kutta method of fourth order. Flow and heat transfer characteristics are determined and represented in some tables and figures. It is found that the structure of the boundary layer depends on the ratio of the velocity of the potential flow near the stagnation point to that of the velocity of the stretching surface. In addition, it is shown that the heat transfer from the plate increases when the Prandtl number increases. Our results are shown to include the steady situation as a special case considered by other authors. Comparison with known results is very good.
Authors
Cornelia Revnic
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romania
Teodor Grosan
Babes-Bolyai University, Applied Mathematics, Romania
Ioan Pop
Babes-Bolyai University, Applied Mathematics, Romania
Keywords
References
See the expanding block below.
Paper coordinates
C. Revnic, T. Grosan and l. Pop, Unsteady boundary layer flow and heat transfer over a stretching sheet, AIP Conference Proceedings , 1046 (2008), 10.1063/1.2997291
https://aip.scitation.org/doi/pdf/10.1063/1.2997291
About this paper
Print ISSN
?
Online ISSN
?
Google Scholar Profile
?
[1] R K. Moore, Unsteady laminar boundary layer flow, NACA TN, 1951, 3471.
[2] M. J. Lightill, Proc. Roy. Soc. 224A, 1-23 (1954).
[3] C. C. Lin, Proc. 9th Int. Cong. Appl. Mech 4, 155-168 (1956).
[4] J. T. Stuart 1,1-40(1971).
[5] N. Riley, SIAM Review 17,274-297(1975).
[6] D. P Telionis, J. Fluids Engng. 101, 29^3 (1979).
[7] D.P Telionis, Unsteady Viscous Flows, Springer, Berlin, 1981.
[8] I. Pop, Theory of Unsteady Boundary Layers (in Romanian), Ed. Stiintiflca si Enciclopedica, Bucuresti-Romania, 1983.
[9] PK.H. Ma, and W.H. Hui, J. Fluid Mech 216, 537-559 (1990).
[10] D. K. Ludlow, P A. Clarkson, and A.-P Bassom, Q. Jl. Mech. Appl. Math. 53,175-206(2000).
[11] C. Y. Wang, Annu. Rev. Fluid Mech 23, 159-177 (1991).
[12] K.N. Lakshmisha, S. Venkateswaran, and G. Nath, ASME J. Heat Transfer 110,590-595(1988).
[13] L.J. Crane, J. Appl. Math. Phys, (ZAMP) 21, 645-647 (1970).
[14] I. Pop, andT.Y. Na, 23,413-422(1996).
[15] C. Y. Wang, Q. Du, M. Miklavcic, and C.-C. Chang, SIAM J. Appl. Math. 57,1-14(1997).
[16] E. M. A. Elbashbeshy, and M.A.A. Bazid, Heat Mass Transfer 41,1-4(2004).
[17] S. Sharidan, T. Mahmood, and I. Pop, Int. J. Appl. Mech. Engng., 11,647-654(2006).
[18] M. E. Ali, andE. Magyari, Int. J. Heat Mass Transfer 50,188-195(2007).
[19] C. D. Surma Devi, H.S. Takhar, and G. Nath, Int. J. Heat Mass Transfer 29, 1996- 1999 (1986).
[20] H.S. Takhar, A.J. Chamkha, and G. Nath, Acta Mechanica 146, 59-71(2001).
[21] T.Ray Mahapatra, and A. S. Gupta, Heat Mass Transfer 38,517-521(2002).