Abstract
The purpose of this paper is to present a differential equation with delay from biological excitable medium. Existence, uniqueness and data dependence (monotony, continuity, differentiability with respect to parameter) results for the solution of the Cauchy problem of biological excitable medium are obtained using weakly Picard operator theory.
Authors
Diana Otrocol
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
Keywords
excitable medium; differential-delay equations; weakly Picard operator.
Paper coordinates
D. Otrocol, A differential equation with delay from biology, J. Appl. Math. & Informatics, 26 (2008) nos. 5-6, pp. 1037–1048.
About this paper
Journal
J. Appl. Math. & Informatics
Publisher Name
JAMI
DOI
google scholar link
[1] J. K. Hale, Introduction to functional differential equations, Springer-Verlag, 1993.
[2] B. N. Hidirov, Regulation mechanism of living system, J. Scientiae Mathematicae Japonicae 64(2006), No.2, 497-504.
[3] M. B. Hidirova, Dynamics of biological excitable medium, J. Scientiae Mathematicae Japonicae 64(2006), No.2, 755-763.
[4] V. Mure¸san, Functional-Integral Equations, Mediamira, Cluj-Napoca, 2003.
[5] D. Otrocol, Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica 48(2006), No.71, 61-68.
[6] D. Otrocol, Lotka-Volterra system with two delays via weakly Picard operators, Nonlinear Analysis Forum 10(2005), No.2, 193-199.
[7] I. A. Rus, Picard operators and applications, J. Scientiae Mathematicae Japonicae 58(2003), No.1, 191-219.
[8] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, 2001.
[9] I. A. Rus, Weakly Picard operators and applications, Seminar of Fixed Point Theory, ClujNapoca, 2(2001), 41-58.
[10] M. Saidalieva, Modelling of regulation mechanism of cellular communities, J. Scientiae Mathematicae Japonicae 8(2003), 463-469.
[11] M. A. S¸erban, Fiber φ-contractions, Studia Univ. ”Babe¸s-Bolyai”, Mathematica 44(1999), No.3 , 99-108.