A viscoelastic contact problem with adhesion and surface memory effects

Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and an obstacle, the so-called foundation. The material’s behavior is modelled with a constitutive law with long memory. The contact is with normal compliance, unilateral constraint, memory effects and adhesion. We present the classical formulation of the problem, then we derive its variational formulation and prove an existence and uniqueness result. The proof is based on arguments of variational inequalities and fixed point.

Authors

Mircea Sofonea
(Laboratoire de Mathématiques et Physique, Université de Perpignan)

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Keywords

existence, fixed point, mathematical model

Cite this paper as

M. Sofonea, F. Pătrulescu, A viscoelastic contact problem with adhesion and surface memory effects, Math. Model. Anal., vol. 19, no. 5 (2014), pp. 607-626

PDF

About this paper

Publisher Name

Vilnius Gediminas Technical University, Vilnius; Taylor & Francis, Abingdon, Oxfordshire

DOI

10.3846/13926292.201

Print ISSN

1392-6292

Online ISSN

1648-3510

MR

3281333

ZBL

?

Google Scholar

?

Paper (preprint) in HTML form

A viscoelastic contact problem with adhesion and surface memory effects

M. Sofonea 1, F. Pătrulescu 2
1 Laboratoire de Mathématiques et Physique
Université de Perpignan, 52 Avenue de Paul Alduy, 66860 Perpignan, France
2 Tiberiu Popoviciu Institute of Numerical Analysis
P.O. Box 68-1, 400110 Cluj-Napoca, Romania
Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and an obstacle, the so-called foundation. The material’s behavior is modelled with a constitutive law with long memory. The contact is with normal compliance, unilateral constraint, memory effects and adhesion. We present the classical formulation of the problem, then we derive its variational formulation and prove an existence and uniqueness result. The proof is based on arguments of variational inequalities and fixed point.

2010 Mathematics Subject Classification : 74M15, 74G25, 74G30, 74D05, 49J40
Keywords: existence, fixed point, mathematical model

1 Introduction

Processes of contact with adhesion are important in many industrial settings where parts, usually nonmetallic, are glued together. For this reason, a considerable effort has been made in their modeling, analysis, numerical analysis, and numerical simulations and, as a result, the engineering and computational literature on this related topics is extensive. Moreover, the mathematical literature devoted to the analysis of adhesive contact process is rapidly growing.

General models with adhesion can be found in [7, 8, 9, 15, 18, and the references therein. In particular, a description of the derivation of various equations and conditions related to the adhesive contact can be found in [9]. The analysis of various contact models with adhesion, including existence and uniqueness results for weak solutions, can be found in [1, 2, 3, 4, 20, 26, 25, for instance. In carrying out this analysis, a systematic use of results on elliptic and evolutionary variational inequalities, convex analysis, nonlinear equations with monotone operators, and fixed points of operators was made. The numerical analysis of quasistatic and dynamic models of adhesive contact can be found in [20]. There, fully discrete schemes were considered and error estimates were derived. Moreover, an application of the theory in the medical field of prosthetic limbs was described in [16, 17. There, the bonding arises between the artificial limb and the tissue and is of considerable importance, since debonding may lead to decrease in the person’s ability to use the limb. The main ingredient in the models presented in all the above mentioned papers is the introduction of a surface internal variable, the bonding field, which describes the fractional density of active bonds on the contact surface. As a fraction its values are restricted to 0β10\leq\beta\leq 1. When β=1\beta=1 at a point of the contact surface, the adhesion is complete and all the bonds are active; when β=0\beta=0 all the bonds are inactive, severed, and there is no adhesion; finally, when 0<β<10<\beta<1 the adhesion is partial and only a fraction β\beta of the bonds is active.

In this paper, we cover the modelling and variational analysis of a new contact problem with adhesion within the infinitesimal strain theory. The evolution of the bonding field is described by a general first order ordinary differential equation, already used in the previously cited papers. Nevertheless, we introduce three novelties in the contact model, which make the difference with our previous papers. First, we describe material’s behavior by a viscoelastic constitutive law with long memory. Second, we model the adhesive contact with a normal compliance condition with unilateral penetration which takes into account the memory effect of the surfaces. A similar condition was introduced in [23, 24] in the study of frictionless contact process without adhesion. Also, a contact condition with normal compliance, unilateral constraint and adhesion was used in [11. There, in contrast with this paper, the memory effects of the foundation were neglected, the process was assumed to be dynamic and the material’s behavior was described with an elastic-visco-plastic constitutive law. The third novelty arises in the fact that, unlike a large number of references, the adhesive contact problem considered in this paper are formulated on the unbounded interval of time +=[0,)\mathbb{R}_{+}=[0,\infty). This implies the use of the framework of Fréchet spaces of continuous functions, instead of that of the classical Banach spaces of continuous functions defined on a bounded interval of time, used in our previous papers.

The rest of the paper is organized as follows. In Section 2 we introduce some notations and preliminary material. In Section 3 we provide a detailed description of the model of adhesive contact. Then, in Section 4, we list the assumptions on the data, derive the variational formulation of the problem and state our main existence
and uniqueness result, Theorem 4.1. The proof is provided in Section 5. It is based on arguments of variational inequalities and fixed point.

2 Notations and Preliminaries

In this short section we present the notations we shall use and some preliminary material. For further details we refer the reader to [10, 18, 22]. Everywhere in this paper we use the notation \mathbb{N} for the set of positive integers and +\mathbb{R}_{+}will represent the set of nonnegative real numbers, i.e. +=[0,+)\mathbb{R}_{+}=[0,+\infty). For a given rr\in\mathbb{R} we denote by r+r^{+}its positive part, i.e. r+=max{r,0}r^{+}=\max\{r,0\}. Let dd\in\mathbb{N}. Then, we denote by 𝕊d\mathbb{S}^{d} the space of second order symmetric tensors on d\mathbb{R}^{d}. The inner product and norm on d\mathbb{R}^{d} and 𝕊d\mathbb{S}^{d} are defined by

𝒖𝒗=uivi,𝒗=(𝒗𝒗)12𝒖,𝒗d𝝈𝝉=σijτij,𝝉=(𝝉𝝉)12𝝈,𝝉𝕊d\begin{array}[]{lrrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

Here and below the indices i,j,k,li,j,k,l run between 1 and dd and, unless stated otherwise, the summation convention over repeated indices is used.

Let Ω\Omega be a bounded domain Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary Γ\Gamma and let Γ1\Gamma_{1} be a measurable part of Γ\Gamma such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. We use the notation 𝒙=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ΩΓ\Omega\cup\Gamma and we denote by 𝝂=(νi)\boldsymbol{\nu}=\left(\nu_{i}\right) the outward unit normal at Γ\Gamma. Also, an index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=ui/xju_{i,j}=\partial u_{i}/\partial x_{j}. We use standard notations for the Lebesgue and Sobolev spaces associated to Ω\Omega and Γ\Gamma and, moreover, we consider the spaces

V={𝒗=(vi)H1(Ω)d:𝒗=𝟎 on Γ1}\displaystyle V=\left\{\boldsymbol{v}=\left(v_{i}\right)\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\}
Q={𝝉=(τij)L2(Ω)d×d:τij=τji}\displaystyle Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}

These are real Hilbert spaces endowed with the inner products

(𝒖,𝒗)V=Ω𝜺(𝒖)𝜺(𝒗)𝑑x,(𝝈,𝝉)Q=Ω𝝈𝝉𝑑x(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx

and the associated norms V\|\cdot\|_{V} and Q\|\cdot\|_{Q}, respectively. Here 𝜺\boldsymbol{\varepsilon} represents the deformation operator given by

𝜺(𝒗)=(εij(𝒗)),εij(𝒗)=12(vi,j+vj,i)𝒗H1(Ω)d.\boldsymbol{\varepsilon}(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}.

Completeness of the space ( V,VV,\|\cdot\|_{V} ) follows from the assumption meas ( Γ1\Gamma_{1} ) >0>0, which allows the use of Korn’s inequality.

For an element 𝒗V\boldsymbol{v}\in V we still write 𝒗\boldsymbol{v} for the trace of 𝒗\boldsymbol{v} on the boundary Γ\Gamma. We denote by vνv_{\nu} and 𝒗τ\boldsymbol{v}_{\tau} the normal and the tangential component of 𝒗\boldsymbol{v} on Γ\Gamma, respectively,
defined by vν=𝒗𝝂,𝒗τ=𝒗vν𝝂v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{\nu},\quad\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{\nu}. Let Γ3\Gamma_{3} be a measurable part of Γ\Gamma. Then, by the Sobolev trace theorem, there exists a positive constant c0c_{0} which depends on Ω\Omega, Γ1\Gamma_{1} and Γ3\Gamma_{3} such that

𝒗L2(Γ3)dc0𝒗V𝒗V.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V. (2.1)

For a regular function 𝝈:ΩΓ𝕊d\boldsymbol{\sigma}:\Omega\cup\Gamma\rightarrow\mathbb{S}^{d} we denote by σν\sigma_{\nu} and 𝝈τ\boldsymbol{\sigma}_{\tau} the normal and the tangential components of the vector 𝝈𝝂\boldsymbol{\sigma}\boldsymbol{\nu} on Γ\Gamma, respectively, and we recall that σν=𝝈𝝂𝝂\sigma_{\nu}=\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{\nu} and 𝝈τ=𝝈𝝂σν𝝂\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{\nu}-\sigma_{\nu}\boldsymbol{\nu}.

We also introduce the space of fourth order tensor fields given by

𝐐={=(ijkl)ijkl=jikl=klijL(Ω),1i,j,k,ld}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right)\mid\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

and we recall that 𝐐\mathbf{Q}_{\infty} is a real Banach space with the norm

𝐐=1i,j,k,ldijklL(Ω)\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\sum_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}

Moreover, a simple calculation shows that

𝝉Q𝐐𝝉Q𝐐,𝝉Q\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q (2.2)

Given a normed space ( X,XX,\|\cdot\|_{X} ) we use the notation C(+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuous functions defined on +\mathbb{R}_{+}with values in XX. It is well known that, if XX is a Banach space, then C(+;X)C\left(\mathbb{R}_{+};X\right) can be organized in a canonical way as a Fréchet space, i.e., as a complete metric space in which the corresponding topology is induced by a countable family of seminorms. Details can be found in [5] and [14], for instance. Also, for a subset KXK\subset X we still use the symbol C(+;K)C\left(\mathbb{R}_{+};K\right) for the set of continuous functions defined on +\mathbb{R}_{+}with values in KK. Finally, for nn\in\mathbb{N} and KXK\subset X we denote by C([0,n];K)C([0,n];K) the set of continuous functions defined on [0,n][0,n] with values in KK.

We end this section with the following result which will be used in Section 5 of the paper.

Theorem 2.1 Let ( X,XX,\|\cdot\|_{X} ) be a Banach space, KK a nonempty closed subset of XX and let Λ:C(+;K)C(+;K)\Lambda:C\left(\mathbb{R}_{+};K\right)\rightarrow C\left(\mathbb{R}_{+};K\right) be a nonlinear operator. Assume that there exists kk\in\mathbb{N} with the following property: for all nn\in\mathbb{N} there exist two constants cn0c_{n}\geq 0 and dn[0,1)d_{n}\in[0,1) such that

Λu(t)Λv(t)Xkcn0tu(s)v(s)Xk𝑑s+dnu(t)v(t)Xk\|\Lambda u(t)-\Lambda v(t)\|_{X}^{k}\leq c_{n}\int_{0}^{t}\|u(s)-v(s)\|_{X}^{k}ds+d_{n}\|u(t)-v(t)\|_{X}^{k}

for all u,vC(+;K)u,v\in C\left(\mathbb{R}_{+};K\right) and for all t[0,n]t\in[0,n]. Then the operator Λ\Lambda has a unique fixed point ηC(+;K)\eta^{*}\in C\left(\mathbb{R}_{+};K\right).

Theorem 2.1 was proved in [19] in the case when K=XK=X. Nevertheless, a careful examination of the proof shows that the theorem is still valid for operators
Λ:C(+;K)C(+;K)\Lambda:C\left(\mathbb{R}_{+};K\right)\rightarrow C\left(\mathbb{R}_{+};K\right), provided that KK is a nonempty closed part of XX. The modification in proof are straightforward and, therefore, we do not provide the details. We only mention that the difference consists in the use of the Banach fixed point argument for contractive maps defined on the set C([0,n];K)C([0,n];K) with values on C([0,n];K)C([0,n];K), for all nn\in\mathbb{N}, instead of contractive maps defined on the space C([0,T];X)C([0,T];X) with values in C([0,T];X)C([0,T];X).

3 Problem statement

The physical setting is as follows. A viscoelastic body occupies a bounded domain Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary Γ\Gamma, divided into three measurable parts Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3}, such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. The body is subject to the action of body forces of density 𝒇0\boldsymbol{f}_{0}, is fixed on Γ1\Gamma_{1} and is submitted to the action of surface tractions of density 𝒇2\boldsymbol{f}_{2} on Γ2\Gamma_{2}. Moreover, the body is in adhesive contact on Γ3\Gamma_{3} with an obstacle, the so-called foundation. We adopt the framework of the small strain theory, we assume that the contact process is quasistatic and we study it in the interval of time +=[0,)\mathbb{R}_{+}=[0,\infty). To derive a mathematical model which corresponds to this physical setting we need to precise the constitutive law of the material, the balance equations and the boundary conditions, as well.

In this paper we assume that the material’s behavior follows a viscoelastic constitutive law with long memory of the form

𝝈(t)=𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s))𝑑s in Ω\boldsymbol{\sigma}(t)=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds\quad\text{ in }\Omega (3.1)

where, here and below, 𝒖\boldsymbol{u} denotes the displacement field, 𝝈\boldsymbol{\sigma} represents the stress field, 𝜺(𝒖)\boldsymbol{\varepsilon}(\boldsymbol{u}) is the linearized strain tensor and t+t\in\mathbb{R}_{+}represents the time variable. Also, 𝒜\mathcal{A} and \mathcal{B} represent the elasticity operator and the relaxation tensor, respectively, and are assumed to verify the following conditions.

{ (a) 𝒜:Ω×𝕊d𝕊d (b) There exists L𝒜>0 such that 𝒜(𝒙,𝜺1)𝒜(𝒙,𝜺2)L𝒜𝜺1𝜺2𝜺1,𝜺2𝕊d, a.e. 𝒙Ω (c) There exists m𝒜>0 such that (𝒜(𝒙,𝜺1)𝒜(𝒙,𝜺2))(𝜺1𝜺2)m𝒜𝜺1𝜺22𝜺1,𝜺2𝕊d, a.e. 𝒙Ω (d) The mapping 𝒙𝒜(𝒙,𝜺) is measurable on Ω for any 𝜺𝕊d (e) The mapping 𝒙𝒜(𝒙,𝟎) belongs to QC(+;𝐐)\left\{\begin{array}[]{l}\text{ (a) }\mathcal{A}:\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}\text{. }\\ \text{ (b) There exists }L_{\mathcal{A}}>0\text{ such that }\\ \left\|\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right\|\leq L_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d}\text{, a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (c) There exists }m_{\mathcal{A}}>0\text{ such that }\\ \quad\left(\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right)\cdot\left(\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right)\geq m_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|^{2}\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{A}(\boldsymbol{x},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega\\ \quad\text{ for any }\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{. }\\ \text{ (e) The mapping }\boldsymbol{x}\mapsto\mathcal{A}(\boldsymbol{x},\mathbf{0})\text{ belongs to }Q\text{. }\\ \quad\mathcal{B}\in C\left(\mathbb{R}_{+};\mathbf{Q}_{\infty}\right)\text{. }\end{array}\right.

Note that in (3.1) and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable 𝒙\boldsymbol{x}. Various examples and mechanical interpretation concerning viscoelastic constitutive laws of the from (3.1) can be found in [6, 21, 22,

Next, since process is quasistatic, we shall use the equilibrium equation

Div𝝈(t)+𝒇0(t)=𝟎 in Ω,\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\quad\text{ in }\Omega, (3.4)

where Div\operatorname{Div} denotes the divergence operator for tensor valued functions, i.e. Div𝝈=(σij,j)\operatorname{Div}\boldsymbol{\sigma}=\left(\sigma_{ij,j}\right). This equation shows that at each time moment the external forces are balanced by the internal stresses. Moreover, since the body is fixed on Γ1\Gamma_{1} and given tractions are acting on Γ2\Gamma_{2} we impose the following displacement-traction conditions:

𝒖(t)=𝟎 on Γ1\displaystyle\boldsymbol{u}(t)=\mathbf{0}\quad\text{ on }\Gamma_{1} (3.5)
𝝈(t)𝝂=𝒇2(t) on Γ2.\displaystyle\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)\quad\text{ on }\Gamma_{2}. (3.6)

In addition, we assume that the densities of body forces and surface tractions have regularity

𝒇0C(+;L2(Ω)d),𝒇2C(+;L2(Γ2)d).\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right). (3.7)

We now turn to the description on the adhesive contact conditions on the surface Γ3\Gamma_{3} in which our main interest is. First, we assume that the penetration is limited by a bound g>0g>0 and, therefore, at each time moment t+t\in\mathbb{R}_{+}, the normal displacement satisfies the inequality

uν(t)g on Γ3.u_{\nu}(t)\leq g\quad\text{ on }\Gamma_{3}. (3.8)

Next, we assume that the normal stress has an additive decomposition of the form

σν(t)=σνD(t)+σνR(t)+σνM(t)+σνA(t) on Γ3\sigma_{\nu}(t)=\sigma_{\nu}^{D}(t)+\sigma_{\nu}^{R}(t)+\sigma_{\nu}^{M}(t)+\sigma_{\nu}^{A}(t)\quad\text{ on }\Gamma_{3} (3.9)

where the functions σνD(t),σνR(t),σνA(t)\sigma_{\nu}^{D}(t),\sigma_{\nu}^{R}(t),\sigma_{\nu}^{A}(t) and σνM(t)\sigma_{\nu}^{M}(t) describe the deformability, the rigidity, the adhesive and the surface memory properties of the foundation. We assume that σνD(t)\sigma_{\nu}^{D}(t) satisfies the normal compliance contact condition, that is

σνD(t)=pν(uν(t)) on Γ3-\sigma_{\nu}^{D}(t)=p_{\nu}\left(u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3} (3.10)

Here pνp_{\nu} is a given function which satisfies

{ (a) pν:Γ3×+.(b) There exists Lν>0 such that |pν(𝒙,r1)pν(𝒙,r2)|Lν|r1r2|r1,r2, a.e. 𝒙Γ3. (c) (pν(𝒙,r1)pν(𝒙,r2))(r1r2)0r1,r2, a.e. 𝒙Γ3. (d) The mapping 𝒙pν(𝒙,r) is measurable on Γ3, for any r. (e) pν(𝒙,r)=0 for all r0, a.e. 𝒙Γ3.\left\{\begin{array}[]{l}\text{ (a) }p_{\nu}:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{\nu}>0\text{ such that }\\ \quad\left|p_{\nu}\left(\boldsymbol{x},r_{1}\right)-p_{\nu}\left(\boldsymbol{x},r_{2}\right)\right|\leq L_{\nu}\left|r_{1}-r_{2}\right|\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) }\left(p_{\nu}\left(\boldsymbol{x},r_{1}\right)-p_{\nu}\left(\boldsymbol{x},r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p_{\nu}(\boldsymbol{x},r)\text{ is measurable on }\Gamma_{3},\\ \quad\text{ for any }r\in\mathbb{R}.\\ \text{ (e) }p_{\nu}(\boldsymbol{x},r)=0\text{ for all }r\leq 0,\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.

The part σνR(t)\sigma_{\nu}^{R}(t) of the normal stress satisfies the Signorini condition in the form with a gap function, i.e.

σνR(t)0,σνR(t)(uν(t)g)=0 on Γ3.\sigma_{\nu}^{R}(t)\leq 0,\quad\sigma_{\nu}^{R}(t)\left(u_{\nu}(t)-g\right)=0\quad\text{ on }\Gamma_{3}. (3.12)

Details on the Signorini condition and normal compliance function can be found in [10, 12, 13, 18, for instance. Here we restrict ourselves to recall that the normal compliance condition describes the contact with a deformable foundation and the Signorini contact condition describes the contact with a perfectly rigid foundation.

The function σνM(t)\sigma_{\nu}^{M}(t) satisfies the condition

{|σνM(t)|0tb(ts)uν+(s)𝑑sσνM(t)=0 if uν(t)<0σνM(t)=0tb(ts)uν+(s)𝑑s if uν(t)>0 on Γ3\left\{\begin{array}[]{l}\left|\sigma_{\nu}^{M}(t)\right|\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\\ \sigma_{\nu}^{M}(t)=0\text{ if }u_{\nu}(t)<0\\ \sigma_{\nu}^{M}(t)=-\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\text{ if }u_{\nu}(t)>0\end{array}\quad\text{ on }\Gamma_{3}\right.

where bb is a surface memory function which verifies

bC(+;L(Γ3)),b(t,𝒙)0 for all t+,a.e. 𝒙Γ3.b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right),\quad b(t,\boldsymbol{x})\geq 0\quad\text{ for all }t\in\mathbb{R}_{+},\text{a.e. }\boldsymbol{x}\in\Gamma_{3}. (3.14)

Details on this condition can be found in [24.
Finally, the contribution of the bonding to the normal traction, σνA(t)\sigma_{\nu}^{A}(t), satisfies

σνA(t)=γνβ2(t)R~(uν(t)) on Γ3\sigma_{\nu}^{A}(t)=\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3} (3.15)

where R~\widetilde{R} is the truncation function given by

R~(s)={L if s<Ls if Ls00 if s>0\widetilde{R}(s)=\left\{\begin{array}[]{cc}L&\text{ if }s<-L\\ -s&\text{ if }-L\leq s\leq 0\\ 0&\text{ if }s>0\end{array}\right.

Here and below L>0L>0 is the characteristic length of the bond, beyond which it stretches without offering any additional resistance (see, e.g., [15]) and γν\gamma_{\nu} represents an adhesion coefficient. More details on this condition can be found in [20.

We combine (3.9), (3.10), (3.15) and denote σνM(t)=ξ(t)-\sigma_{\nu}^{M}(t)=\xi(t) to see that

σνR(t)=σν(t)+pν(uν(t))γνβ2(t)R~(uν(t))+ξ(t) on Γ3\sigma_{\nu}^{R}(t)=\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)+\xi(t)\quad\text{ on }\Gamma_{3} (3.17)

Then we substitute equality (3.17) in (3.12) and use (3.8), (3.13) and (3.14) to obtain
the following contact condition

{uν(t)g,σν(t)+pν(uν(t))+ξ(t)γνβ2(t)R~(uν(t))0(uν(t)g)(σν(t)+pν(uν(t))+ξ(t)γνβ2(t)R~(uν(t)))=00ξ(t)0tb(ts)uν+(s)𝑑sξ(t)=0 if uν(t)<0ξ(t)=0tb(ts)uν+(s)𝑑s if uν(t)>0\left\{\begin{array}[]{l}u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)+\xi(t)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\leq 0\\ \left(u_{\nu}(t)-g\right)\left(\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)+\xi(t)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\right)=0\\ 0\leq\xi(t)\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\\ \xi(t)=0\text{ if }u_{\nu}(t)<0\\ \xi(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\text{ if }u_{\nu}(t)>0\end{array}\right.

To complete our model we assume that the resistance to tangential motion is generated mainly by the glue, and the frictional traction can be neglected. In particular, when all the adhesive bonds are inactive, or broken, the motion is frictionless. Thus, the tangential traction depends on the intensity of adhesion and on the tangential displacement, but only up to the bond length LL, that is

𝝈τ(t)=pτ(β(t))𝑹(𝒖τ(t)) on Γ3,-\boldsymbol{\sigma}_{\tau}(t)=p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3}, (3.19)

where the truncation operator 𝑹\boldsymbol{R}^{*} is defined by

𝑹(𝒗)={𝒗 if 𝒗L,L𝒗𝒗 if 𝒗L.\boldsymbol{R}^{*}(\boldsymbol{v})=\left\{\begin{array}[]{cc}\boldsymbol{v}&\text{ if }\|\boldsymbol{v}\|\leq L,\\ \frac{L}{\|\boldsymbol{v}\|}\boldsymbol{v}&\text{ if }\|\boldsymbol{v}\|\geq L.\end{array}\right.

Then, pτ(β)p_{\tau}(\beta) acts as the stiffness or spring constant, and the traction is in direction opposite to the displacement. The tangential function pτp_{\tau} satisfies

{ (a) pτ:Γ3×+.(b) There exists Lτ>0 such that |pτ(𝒙,β1)pτ(𝒙,β2)|Lτ|β1β2|β1,β2, a.e. 𝒙Γ3. (c) There exists Mτ>0 such that pτ(𝒙,β)Mτβ, a.e. 𝒙Γ3. (d) The mapping 𝒙pτ(𝒙,β) is measurable on Γ3, for any β. (e) pτ(𝒙,0)=0 a.e. 𝒙Γ3.\left\{\begin{array}[]{l}\text{ (a) }p_{\tau}:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{\tau}>0\text{ such that }\\ \quad\left|p_{\tau}\left(\boldsymbol{x},\beta_{1}\right)-p_{\tau}\left(\boldsymbol{x},\beta_{2}\right)\right|\leq L_{\tau}\left|\beta_{1}-\beta_{2}\right|\\ \quad\forall\beta_{1},\beta_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) There exists }M_{\tau}>0\text{ such that }p_{\tau}(\boldsymbol{x},\beta)\leq M_{\tau}\\ \quad\forall\beta\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p_{\tau}(\boldsymbol{x},\beta)\text{ is measurable on }\Gamma_{3},\\ \quad\text{ for any }\beta\in\mathbb{R}.\\ \text{ (e) }p_{\tau}(\boldsymbol{x},0)=0\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.

We follow [7, 8, 20] and assume that the bonding field satisfies the unilateral constraint

0β(t)1 on Γ3.0\leq\beta(t)\leq 1\quad\text{ on }\quad\Gamma_{3}. (3.22)

Moreover, its evolution is governed by the differential equation

β˙(t)=(γνβ(t)[R(uν(t))]2εa)+ on Γ3\dot{\beta}(t)=-\left(\gamma_{\nu}\beta(t)\left[R\left(u_{\nu}(t)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\quad\text{ on }\quad\Gamma_{3} (3.23)

in which εa\varepsilon_{a} represents the Dupré energy and RR is the truncation operator given by

R(s)={L if s<Ls if LsLL if s>LR(s)=\left\{\begin{array}[]{cc}-L&\text{ if }s<-L\\ s&\text{ if }-L\leq s\leq L\\ L&\text{ if }s>L\end{array}\right.

We complete this differential equation with the initial condition

β(0)=β0 on Γ3\beta(0)=\beta_{0}\text{ on }\Gamma_{3} (3.25)

and we assume that the adhesion coefficient, γν\gamma_{\nu}, the Dupré energy εa\varepsilon_{a}, and initial bonding field, β0\beta_{0}, satisfy the conditions

γνL(Γ3),γν0,εaL(Γ3),εa0β0L2(Γ3),0β01 a.e. on Γ3.\begin{array}[]{ll}\gamma_{\nu}\in L^{\infty}\left(\Gamma_{3}\right),&\gamma_{\nu}\geq 0,\quad\varepsilon_{a}\in L^{\infty}\left(\Gamma_{3}\right),\quad\varepsilon_{a}\geq 0\\ \beta_{0}\in L^{2}\left(\Gamma_{3}\right),&0\leq\beta_{0}\leq 1\quad\text{ a.e. on }\Gamma_{3}.\end{array}

We gather the above equations and conditions to obtain the following formulation of the mechanical problem of quasistatic adhesive contact with normal compliance, unilateral constraint and surface memory term.

Problem 𝒫\mathcal{P}. Find a displacement field 𝒖:Ω×+d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d}, a stress field 𝝈:Ω×+𝕊d\boldsymbol{\sigma}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} and a adhesion field β:Γ3×+[0,1]\beta:\Gamma_{3}\times\mathbb{R}_{+}\rightarrow[0,1] such that

𝝈(t)=𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s))𝑑s\displaystyle\boldsymbol{\sigma}(t)=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds in Ω,\displaystyle\text{ in }\quad\Omega, (3.28)
Div𝝈(t)+𝒇0(t)=𝟎\displaystyle\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0} in Ω,\displaystyle\text{ in }\quad\Omega, (3.29)
𝒖(t)=𝟎\displaystyle\boldsymbol{u}(t)=\mathbf{0} on Γ1,\displaystyle\text{ on }\quad\Gamma_{1}, (3.30)
𝝈(t)𝝂=𝒇2(t)\displaystyle\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on Γ2,\displaystyle\text{ on }\quad\Gamma_{2}, (3.31)
𝝈τ(t)=pτ(β(t))𝑹(𝒖τ(t))\displaystyle-\boldsymbol{\sigma}_{\tau}(t)=p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right) on Γ3,\displaystyle\text{ on }\quad\Gamma_{3}, (3.32)
β˙(t)=(γνβ(t)[R(uν(t))]2εa)+\displaystyle\dot{\beta}(t)=-\left(\gamma_{\nu}\beta(t)\left[R\left(u_{\nu}(t)\right)\right]^{2}-\varepsilon_{a}\right)^{+} on Γ3,\displaystyle\text{on }\quad\Gamma_{3}, (3.33)

for all t+t\in\mathbb{R}_{+}, there exists ξ:Γ3×+\xi:\Gamma_{3}\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

uν(t)g,σν(t)+pν(uν(t))+ξ(t)γνβ2(t)R~(uν(t))0,(uν(t)g)[σν(t)+pν(uν(t))+ξ(t)γνβ2(t)R~(uν(t))]=0,0ξ(t)0tb(ts)uν+(s)𝑑s,ξ(t)=0 if uν(t)<0,ξ(t)=0tb(ts)uν+(s)𝑑s if uν(t)>0} on Γ3\left.\begin{array}[]{l}u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)+\xi(t)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\leq 0,\\ \left(u_{\nu}(t)-g\right)\left[\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)+\xi(t)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\right]=0,\\ 0\leq\xi(t)\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,\\ \xi(t)=0\text{ if }u_{\nu}(t)<0,\\ \xi(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\text{ if }u_{\nu}(t)>0\end{array}\right\}\text{ on }\Gamma_{3}

for all t+t\in\mathbb{R}_{+}and, moreover,

β(0)=β0 on Γ3\beta(0)=\beta_{0}\quad\text{ on }\Gamma_{3} (3.35)

The unique weak solvability of the contact problem 𝒫\mathcal{P} will be stated in Section 4 and proved in Section 5. We end this current section with some additional comments of the contact condition (3.34), which represents one of the novelties of this paper.

First, we recall that (3.34) describes a condition with unilateral constraint, since inequality (3.8) holds at each time moment. The rest of the comments in this paragraph, together with the corresponding equalities and inequalities, are valid for a given point 𝒙\boldsymbol{x} on the contact surface Γ3\Gamma_{3}. Nevertheless, we recall that, for simplicity, we skip the dependence of various functions on 𝒙\boldsymbol{x}. Assume that at a given moment tt there is penetration which did not reach the bound gg, i.e. 0<uν(t)<g0<u_{\nu}(t)<g. Then, (3.34) yields

σν(t)=pν(uν(t))+0tb(ts)uν+(s)𝑑s-\sigma_{\nu}(t)=p_{\nu}\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds (3.36)

This equality shows that at the moment tt, the reaction of the foundation depends both on the current value of the penetration (represented by the term pν(uν(t))p_{\nu}\left(u_{\nu}(t)\right) ) and on the history of the penetration (represented by the integral term in (3.36)). Assume now that at a given moment tt there is separation between the body and the foundation, i.e. uν(t)<0u_{\nu}(t)<0. Then, (3.34) shows that

σν(t)=γνβ2(t)R~(uν(t))\sigma_{\nu}(t)=\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right) (3.37)

i.e. the reaction of the foundation is nonnegative and depends on adhesion coefficient, on the square of intensity of adhesion and on the normal displacement, but as it does not exceed the bound length LL. Once it exceeds it the normal traction remains constant and |σν(t)|γνL\left|\sigma_{\nu}(t)\right|\leq\gamma_{\nu}L.

In conclusion, condition (3.34) shows that delimitation takes place when there is separation. When there is penetration the contact stress is given by a normal compliance condition with memory term of the form (3.36) but up to the limit gg. When the limit gg is reached, the stress is given by a Signorini-type unilateral condition. This condition can be interpreted physically as follows. The foundation is assumed to be made of a hard material covered with a thin layer made of a soft adhesive material with thickness gg. The layer has adhesive viscoelastic behavior, i.e. is deformable, allows penetration and develops memory effects. The hard material is perfectly rigid and, therefore, it does not allow penetration. To summarize, the foundation has a rigid-adhesive-viscoelastic behavior; its adhesive- viscoelastic behavior is caused by the layer of the soft material while its rigid behavior is caused by the hard material.

4 Variational formulation and main result

We now turn to the variational formulation of Problem 𝒫\mathcal{P} and, to this end, we assume in what follows that ( 𝒖,𝝈,𝜷\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\beta} ) represent a triple of regular functions which satisfy (3.28)-(3.35). We introduce the set of admissible displacements and the set of admissible bonding fields, respectively, defined by

U={𝒗V:vνg a.e. on Γ3}\displaystyle U=\left\{\boldsymbol{v}\in V:v_{\nu}\leq g\quad\text{ a.e. on }\quad\Gamma_{3}\right\} (4.1)
Z={ωL2(Γ3):0ω1 a.e. on Γ3}.\displaystyle Z=\left\{\omega\in L^{2}\left(\Gamma_{3}\right):0\leq\omega\leq 1\quad\text{ a.e. on }\Gamma_{3}\right\}. (4.2)

Let 𝒗U\boldsymbol{v}\in U and t+t\in\mathbb{R}_{+}be given. We use the Green’s formula to see that

Ω𝝈(t)𝜺(𝒗)𝑑x+ΩDiv𝝈(t)𝒗𝑑x=Γ𝝈(t)𝝂𝒗𝑑a𝒗V\int_{\Omega}\boldsymbol{\sigma}(t)\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}(t)\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V

and, combining this equality with the equilibrium equation (3.29), we find that

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x+Γ𝝈(t)𝝂(𝒗𝒖(t))𝑑a\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx+\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

Then, we split the surface integral over Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3} and, since 𝒗𝒖(t)=𝟎\boldsymbol{v}-\boldsymbol{u}(t)=\mathbf{0} a.e. on Γ1,𝝈(t)𝝂=𝒇2(t)\Gamma_{1},\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on Γ2\Gamma_{2}, we deduce that

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x\displaystyle\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx
+Γ2𝒇2(t)(𝒗𝒖(t))𝑑a+Γ3𝝈(t)𝝂(𝒗𝒖(t))𝑑a\displaystyle\quad+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

Moreover, since

𝝈(t)𝝂(𝒗𝒖(t))=σν(t)(vνuν(t))+𝝈τ(t)(𝒗τ𝒖τ(t)) on Γ3,\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))=\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)+\boldsymbol{\sigma}_{\tau}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3},

taking into account condition (3.32) we obtain

Ω\displaystyle\int_{\Omega} 𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))dx\displaystyle\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx (4.3)
=\displaystyle= Ω𝒇0(t)(𝒗𝒖(t))𝑑x+Γ2𝒇2(t)(𝒗𝒖(t))𝑑a\displaystyle\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da
+Γ3σν(t)(vνuν(t))𝑑aΓ3pτ(β(t))𝑹(𝒖τ(t))(𝒗τ𝒖τ(t))𝑑a\displaystyle+\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da-\int_{\Gamma_{3}}p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)da

We write now

σν(t)\displaystyle\sigma_{\nu}(t) (vνuν(t))=[σν(t)+pν(uν(t))+ξ(t)γνβ2(t)R~(uν(t))](vνg)\displaystyle\left(v_{\nu}-u_{\nu}(t)\right)=\left[\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)+\xi(t)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\right]\left(v_{\nu}-g\right)
+\displaystyle+ [σν(t)+pν(uν(t))+ξ(t)γνβ2(t)R~(uν(t))](guν(t))\displaystyle{\left[\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)+\xi(t)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\right]\left(g-u_{\nu}(t)\right)}
[pν(uν(t))+ξ(t)γνβ2(t)R~(uν(t))](vνuν(t)) on Γ3\displaystyle-\left[p_{\nu}\left(u_{\nu}(t)\right)+\xi(t)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\right]\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}

then we use the contact condition (3.34) and definition (4.1) of the set UU to see that

σν(t)(vνuν(t))\displaystyle\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right) (4.4)
[pν(uν(t))+ξ(t)γνβ2(t)R~(uν(t))](vνuν(t)) on Γ3\displaystyle\quad\geq-\left[p_{\nu}\left(u_{\nu}(t)\right)+\xi(t)-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\right]\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}

We use (3.34), again, and the hypothesis (3.14) on function bb to deduce that

(0tb(ts)uν+(s)𝑑s)(vν+uν+(t))ξ(t)(vνuν(t)) on Γ3\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}^{+}-u_{\nu}^{+}(t)\right)\geq\xi(t)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3} (4.5)

Then we add the inequalities (4.4) and (4.5) and integrate the result on Γ3\Gamma_{3} to find that

Γ3σν(t)(vνuν(t))𝑑a+Γ3(0tb(ts)uν+(s)𝑑s)(vν+uν+(t))𝑑a\displaystyle\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da+\int_{\Gamma_{3}}\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}^{+}-u_{\nu}^{+}(t)\right)da (4.6)
Γ3pν(uν(t))(vνuν(t))𝑑a+Γ3γνβ2(t)R~(uν(t))(vνuν(t))𝑑a\displaystyle\quad\geq-\int_{\Gamma_{3}}p_{\nu}\left(u_{\nu}(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)da+\int_{\Gamma_{3}}\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)da

Finally, we combine (4.3) and (4.6) to obtain that

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t))dx+Γ3pν(uν(t))(vνuν(t))da\displaystyle\int_{\Omega}\boldsymbol{\sigma}(t)\cdot\left(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))dx+\int_{\Gamma_{3}}p_{\nu}\left(u_{\nu}(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)da\right. (4.7)
+Γ3pτ(β(t))𝑹(𝒖τ(t))(𝒗τ𝒖τ(t))𝑑a\displaystyle\quad+\int_{\Gamma_{3}}p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)da
+Γ3(0tb(ts)uν+(s)𝑑s)(vν+uν+(t))𝑑a\displaystyle\quad+\int_{\Gamma_{3}}\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}^{+}-u_{\nu}^{+}(t)\right)da
Γ3γνβ2(t)R~(uν(t))(vνuν(t))𝑑a\displaystyle\quad-\int_{\Gamma_{3}}\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)da
Ω𝒇0(t)(𝒗𝒖(t))𝑑x+Γ2𝒇2(t)(𝒗𝒖(t))𝑑x𝒗U\displaystyle\quad\geq\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx\quad\forall\boldsymbol{v}\in U

Next, we use the Riesz representation Theorem to define the operator P:VVP:V\rightarrow V and the function 𝒇:+V\boldsymbol{f}:\mathbb{R}_{+}\rightarrow V by equalities

(P𝒖,𝒗)V=Γ3pν(uν)vν𝑑a𝒖,𝒗V\displaystyle(P\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p_{\nu}\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (4.8)
(𝒇(t),𝒗)V=Ω𝒇0(t)𝒗𝑑x+Γ2𝒇2(t)𝒗𝑑a𝒗V\displaystyle(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V (4.9)

It follows from assumptions (3.11) and (2.1) that

(P𝒖P𝒗,𝒖𝒗)V0,P𝒖P𝒗Vc02Lν𝒖𝒗V𝒖,𝒗V,(P\boldsymbol{u}-P\boldsymbol{v},\boldsymbol{u}-\boldsymbol{v})_{V}\geq 0,\quad\|P\boldsymbol{u}-P\boldsymbol{v}\|_{V}\leq c_{0}^{2}L_{\nu}\|\boldsymbol{u}-\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V, (4.10)

which shows that P:VVP:V\rightarrow V is a monotone Lipschitz continuous operator. Moreover, the regularity (3.7) implies that

𝒇C(+;V).\boldsymbol{f}\in C\left(\mathbb{R}_{+};V\right). (4.11)

We also consider the functional j:Z×V×Vj:Z\times V\times V\rightarrow\mathbb{R} defined by

j(β,𝒖,𝒗)=Γ3[pτ(β(t))𝑹(𝒖τ(t))𝒗τγνβ2(t)R~(uν(t))vν]𝑑aj(\beta,\boldsymbol{u},\boldsymbol{v})=\int_{\Gamma_{3}}\left[p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)v_{\nu}\right]da (4.12)

Then, we use (4.7) and notations (4.8)-(4.12) to deduce that

(𝝈(t),𝜺(𝒗)𝜺(𝒖(t)))Q+(P𝒖(t),𝒗𝒖(t))V\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V} (4.13)
+j(β(t),𝒖(t),𝒗)j(β(t),𝒖(t),𝒖(t))\displaystyle\quad+j(\beta(t),\boldsymbol{u}(t),\boldsymbol{v})-j(\beta(t),\boldsymbol{u}(t),\boldsymbol{u}(t))
+(0tb(ts)uν+(s)𝑑s,vν+uν+(t))L2(Γ3)\displaystyle\quad+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
(𝒇(t),𝒗𝒖(t))V\displaystyle\quad\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}

Also we integrate the differential equation (3.33) with the initial condition (3.35) to obtain that

β(t)=β00t(γνβ(s)[R(uν(s))]2εa)+𝑑s on Γ3\beta(t)=\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds\quad\text{ on }\Gamma_{3} (4.14)

Finally, we recall that the unilateral constraints imposed to the displacement and bonding field, combined with the definitions (4.1) and (4.2), yield

𝒖(t)U,β(t)Z.\boldsymbol{u}(t)\in U,\quad\beta(t)\in Z. (4.15)

We now gather the constitutive law (3.28), the variational inequality (4.13), the integral equation (4.14) and the unilateral constraints (4.15) to obtain the following variational formulation of Problem 𝒫\mathcal{P}.

Problem 𝒫V\mathcal{P}^{V}. Find a displacement field 𝒖:+U\boldsymbol{u}:\mathbb{R}_{+}\rightarrow U, a stress field 𝝈:+Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q and a bonding field β:+Z\beta:\mathbb{R}_{+}\rightarrow Z such that for all t+t\in\mathbb{R}_{+}we have

𝝈(t)=𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s))𝑑s\displaystyle\boldsymbol{\sigma}(t)=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds (4.16)
(𝝈(t),𝜺(𝒗)𝜺(𝒖(t)))Q+(P𝒖(t),𝒗𝒖(t))V\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V} (4.17)
+(0tb(ts)uν+(s)𝑑s,vν+uν+(t))L2(Γ3)+j(β(t),𝒖(t),𝒗𝒖(t))\displaystyle\quad+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+j(\beta(t),\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))
(𝒇(t),𝒗𝒖(t))V𝒗U\displaystyle\quad\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U
β(t)=β00t(γνβ(s)[R(uν(s))]2εa)+𝑑s\displaystyle\beta(t)=\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds (4.18)

The existence of the unique solution of Problem 𝒫V\mathcal{P}^{V} is stated below and proved in the next section.

Theorem 4.1 Assume that (3.2), (3.3), 3.7), (3.11), 3.14, (3.21), 3.261), and (3.27) hold. Then, there exists a unique solution ( 𝒖,𝝈,β\boldsymbol{u},\boldsymbol{\sigma},\beta ) of Problem 𝒫V\mathcal{P}^{V}. Moreover, the solution satisfies,

𝒖C(+;U),𝝈C(+;Q),βC(+;Z).\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right),\quad\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right),\quad\beta\in C\left(\mathbb{R}_{+};Z\right). (4.19)

We conclude that, under assumptions of Theorem 4.1, Problem 𝒫\mathcal{P} has a unique weak solution with regularity (4.19).

We end this section with some inequalities involving the functional jj which will be used in the proof of Theorem 4.1. Below in this section β,β1\beta,\beta_{1}, and β2\beta_{2} denote elements of ZZ while 𝒖1,𝒖2\boldsymbol{u}_{1},\boldsymbol{u}_{2}, and 𝒗\boldsymbol{v} represent elements of VV; recall also that uiνu_{i\nu} and 𝒖iτ\boldsymbol{u}_{i\tau} denote the normal component and the tangential part of 𝒖i\boldsymbol{u}_{i}, for i=1,2i=1,2; and, finally, cc denotes a generic positive constant which may depend on Ω,Γ1,Γ2,Γ3,𝒜\Omega,\Gamma_{1},\Gamma_{2},\Gamma_{3},\mathcal{A}, ,pν,pτ,γν\mathcal{B},p_{\nu},p_{\tau},\gamma_{\nu} and LL, but does not depend on tt nor on the rest of the input data, and whose value may change from place to place.

First, we note that jj is linear with respect to the last argument and, therefore,

j(β,𝒖,𝒗)=j(β,𝒖,𝒗).j(\beta,\boldsymbol{u},-\boldsymbol{v})=-j(\beta,\boldsymbol{u},\boldsymbol{v}). (4.20)

Next, using (4.12) we find that

j(β1,𝒖1,𝒖2𝒖1)+j(β2,𝒖2,𝒖1𝒖2)\displaystyle j\left(\beta_{1},\boldsymbol{u}_{1},\boldsymbol{u}_{2}-\boldsymbol{u}_{1}\right)+j\left(\beta_{2},\boldsymbol{u}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)
=Γ3γνβ12(R~(u1ν)R~(u2ν))(u1νu2ν)𝑑a\displaystyle=\int_{\Gamma_{3}}\gamma_{\nu}\beta_{1}^{2}\left(\widetilde{R}\left(u_{1\nu}\right)-\widetilde{R}\left(u_{2\nu}\right)\right)\left(u_{1\nu}-u_{2\nu}\right)da
+Γ3γν(β12β22)R~(u2ν)(u1νu2ν)𝑑a\displaystyle\quad+\int_{\Gamma_{3}}\gamma_{\nu}\left(\beta_{1}^{2}-\beta_{2}^{2}\right)\widetilde{R}\left(u_{2\nu}\right)\left(u_{1\nu}-u_{2\nu}\right)da
+Γ3pτ(β1)(𝑹(𝒖1τ)𝑹(𝒖2τ))(𝒖2τ𝒖1τ)𝑑a\displaystyle\quad+\int_{\Gamma_{3}}p_{\tau}\left(\beta_{1}\right)\left(\boldsymbol{R}^{*}\left(\boldsymbol{u}_{1\tau}\right)-\boldsymbol{R}^{*}\left(\boldsymbol{u}_{2\tau}\right)\right)\cdot\left(\boldsymbol{u}_{2\tau}-\boldsymbol{u}_{1\tau}\right)da
+Γ3(pτ(β1)pτ(β2))𝑹(𝒖2τ)(𝒖2τ𝒖1τ)𝑑a\displaystyle\quad+\int_{\Gamma_{3}}\left(p_{\tau}\left(\beta_{1}\right)-p_{\tau}\left(\beta_{2}\right)\right)\boldsymbol{R}^{*}\left(\boldsymbol{u}_{2\tau}\right)\cdot\left(\boldsymbol{u}_{2\tau}-\boldsymbol{u}_{1\tau}\right)da

and since

(R~(u1ν)R~(u2ν))(u1νu2ν)0 a.e. on Γ3,(𝑹(𝒖1τ)𝑹(𝒖2τ))(𝒖2τ𝒖1τ)0 a.e. on Γ3,\begin{gathered}\left(\widetilde{R}\left(u_{1\nu}\right)-\widetilde{R}\left(u_{2\nu}\right)\right)\left(u_{1\nu}-u_{2\nu}\right)\leq 0\quad\text{ a.e. on }\Gamma_{3},\\ \left(\boldsymbol{R}^{*}\left(\boldsymbol{u}_{1\tau}\right)-\boldsymbol{R}^{*}\left(\boldsymbol{u}_{2\tau}\right)\right)\cdot\left(\boldsymbol{u}_{2\tau}-\boldsymbol{u}_{1\tau}\right)\leq 0\quad\text{ a.e. on }\Gamma_{3},\end{gathered}

we obtain

j(β1,𝒖1,𝒖2𝒖1)+j(β2,𝒖2,𝒖1𝒖2)\displaystyle j\left(\beta_{1},\boldsymbol{u}_{1},\boldsymbol{u}_{2}-\boldsymbol{u}_{1}\right)+j\left(\beta_{2},\boldsymbol{u}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)
Γ3γν(β12β22)R~(u2ν)(u1νu2ν)𝑑a\displaystyle\leq\int_{\Gamma_{3}}\gamma_{\nu}\left(\beta_{1}^{2}-\beta_{2}^{2}\right)\widetilde{R}\left(u_{2\nu}\right)\left(u_{1\nu}-u_{2\nu}\right)da
+Γ3(pτ(β1)pτ(β2))𝑹(𝒖2τ)(𝒖2τ𝒖1τ)𝑑a\displaystyle\quad+\int_{\Gamma_{3}}\left(p_{\tau}\left(\beta_{1}\right)-p_{\tau}\left(\beta_{2}\right)\right)\boldsymbol{R}^{*}\left(\boldsymbol{u}_{2\tau}\right)\cdot\left(\boldsymbol{u}_{2\tau}-\boldsymbol{u}_{1\tau}\right)da

Using now the inequalities |R~(u2ν)|L,𝑹(𝒖2τ)L,|β1|1,|β2|1\left|\widetilde{R}\left(u_{2\nu}\right)\right|\leq L,\left\|\boldsymbol{R}^{*}\left(\boldsymbol{u}_{2\tau}\right)\right\|\leq L,\left|\beta_{1}\right|\leq 1,\left|\beta_{2}\right|\leq 1, valid a.e. on Γ3\Gamma_{3}, and the property (3.21) (c) of the function pτp_{\tau}, we deduce that

j(β1,𝒖1,𝒖2𝒖1)+j(β2,𝒖2,𝒖1𝒖2)cΓ3|β1β2|𝒖1𝒖2V𝑑a.\begin{array}[]{r}j\left(\beta_{1},\boldsymbol{u}_{1},\boldsymbol{u}_{2}-\boldsymbol{u}_{1}\right)+j\left(\beta_{2},\boldsymbol{u}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)\\ \quad\leq c\int_{\Gamma_{3}}\left|\beta_{1}-\beta_{2}\right|\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}da.\end{array}

Next, we combine the previous inequality with (2.1) to obtain

j(β1,𝒖1,𝒖2𝒖1)+j(β2,𝒖2,𝒖1𝒖2)cβ1β2L2(Γ3)𝒖1𝒖2V.\begin{array}[]{r}j\left(\beta_{1},\boldsymbol{u}_{1},\boldsymbol{u}_{2}-\boldsymbol{u}_{1}\right)+j\left(\beta_{2},\boldsymbol{u}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)\\ \leq c\left\|\beta_{1}-\beta_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}.\end{array}

We now choose β1=β2=β\beta_{1}=\beta_{2}=\beta in (4.21) to find that

j(β,𝒖1,𝒖2𝒖1)+j(β,𝒖2,𝒖1𝒖2)0.j\left(\beta,\boldsymbol{u}_{1},\boldsymbol{u}_{2}-\boldsymbol{u}_{1}\right)+j\left(\beta,\boldsymbol{u}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)\leq 0. (4.22)

Similar manipulations, based on the Lipschitz continuity of the truncation operators R~\widetilde{R} and 𝑹\boldsymbol{R}^{*} and on the boundedness of the function pτp_{\tau}, show that

|j(β,𝒖1,𝒗)j(β,𝒖2,𝒗)|c𝒖1𝒖2V𝒗V\left|j\left(\beta,\boldsymbol{u}_{1},\boldsymbol{v}\right)-j\left(\beta,\boldsymbol{u}_{2},\boldsymbol{v}\right)\right|\leq c\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}\|\boldsymbol{v}\|_{V} (4.23)

Inequalities (4.21)-(4.23) and equality (4.20) will be used in various places in the next section.

5 Proof of Theorem 4.1

The proof of Theorem 4.1 will be carried out in several steps. To present it everywhere below we assume that the hypothesis (3.2), (3.3), (3.7), (3.11), (3.14), (3.21), (3.26), and (3.27) hold. Also, we use the product space X=Q×L2(Γ3)×L2(Γ3)X=Q\times L^{2}\left(\Gamma_{3}\right)\times L^{2}\left(\Gamma_{3}\right), endowed with the norm

𝜼X=𝜽Q+ζL2(Γ3)+βL2(Γ3)𝜼=(𝜽,ζ,β)X.\|\boldsymbol{\eta}\|_{X}=\|\boldsymbol{\theta}\|_{Q}+\|\zeta\|_{L^{2}\left(\Gamma_{3}\right)}+\|\beta\|_{L^{2}\left(\Gamma_{3}\right)}\quad\forall\boldsymbol{\eta}=(\boldsymbol{\theta},\zeta,\beta)\in X.

Let 𝜼=(𝜽,ζ,β)C(+;Q×L2(Γ3)×Z)\boldsymbol{\eta}=(\boldsymbol{\theta},\zeta,\beta)\in C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\times Z\right). In the first step we consider the following variational problem.

Problem 𝒫ηV\mathcal{P}_{\eta}^{V}. Find a displacement field 𝒖η:+U\boldsymbol{u}_{\eta}:\mathbb{R}_{+}\rightarrow U such that, for all t+t\in\mathbb{R}_{+}, 𝒖η(t)U\boldsymbol{u}_{\eta}(t)\in U and

(𝒜𝜺(𝒖η(t)),𝜺(𝒗)𝜺(𝒖η(t)))Q+(𝜽(t),𝜺(𝒗)𝜺(𝒖η(t)))Q\displaystyle\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\eta}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\eta}(t)\right)\right)_{Q}+\left(\boldsymbol{\theta}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\eta}(t)\right)\right)_{Q} (5.1)
+(P𝒖η(t),𝒗𝒖η(t))V+(ζ+(t),vν+uην+(t))L2(Γ3)\displaystyle\quad+\left(P\boldsymbol{u}_{\eta}(t),\boldsymbol{v}-\boldsymbol{u}_{\eta}(t)\right)_{V}+\left(\zeta^{+}(t),v_{\nu}^{+}-u_{\eta\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
+j(β(t),𝒖η(t),𝒗𝒖η(t))(𝒇(t),𝒗𝒖η(t))V𝒗U.\displaystyle\quad+j\left(\beta(t),\boldsymbol{u}_{\eta}(t),\boldsymbol{v}-\boldsymbol{u}_{\eta}(t)\right)\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\eta}(t)\right)_{V}\quad\forall\boldsymbol{v}\in U.

We have the following result concerning this problem.

Lemma 5.1 There exists a unique solution to Problem 𝒫ηV\mathcal{P}_{\eta}^{V} which satisfies 𝒖ηC(+;U)\boldsymbol{u}_{\eta}\in C\left(\mathbb{R}_{+};U\right). Moreover, if 𝒖i\boldsymbol{u}_{i} represents the solution of Problem 𝒫ηV\mathcal{P}_{\eta}^{V} for 𝜼=𝜼iC(+;Q×L2(Γ3)×Z),i=1,2\boldsymbol{\eta}=\boldsymbol{\eta}_{i}\in C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\times Z\right),i=1,2, then there exists c>0c>0 such that

𝒖1(t)𝒖2(t)Vc𝜼1(t)𝜼2(t)Xt+\left\|\boldsymbol{u}_{1}(t)-\boldsymbol{u}_{2}(t)\right\|_{V}\leq c\left\|\boldsymbol{\eta}_{1}(t)-\boldsymbol{\eta}_{2}(t)\right\|_{X}\quad\forall t\in\mathbb{R}_{+} (5.2)

Proof. Let t+t\in\mathbb{R}_{+}and consider the operator Aηt:VVA_{\eta t}:V\rightarrow V and the functional φηt:V\varphi_{\eta t}:V\rightarrow\mathbb{R} defined by

(Aηt𝒖,𝒗)V=(𝒜𝜺(𝒖),𝜺(𝒗))Q+(P𝒖,𝒗)V+j(β(t),𝒖,𝒗)𝒖,𝒗V\displaystyle\left(A_{\eta t}\boldsymbol{u},\boldsymbol{v}\right)_{V}=(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+(P\boldsymbol{u},\boldsymbol{v})_{V}+j(\beta(t),\boldsymbol{u},\boldsymbol{v})\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.3)
φηt(𝒗)=(𝜽(t),𝜺(𝒗))Q+(ζ+(t),vν+)L2(Γ3)𝒗V\displaystyle\varphi_{\eta t}(\boldsymbol{v})=(\boldsymbol{\theta}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\left(\zeta^{+}(t),v_{\nu}^{+}\right)_{L^{2}\left(\Gamma_{3}\right)}\quad\forall\boldsymbol{v}\in V (5.4)

We use (3.2), (4.10), (4.20), (4.22) and (4.23) to see that the operator AηtA_{\eta t} is strongly monotone and Lipschitz continuous; moreover, it is easy to see that the functional φηt\varphi_{\eta t} is convex and lower semicontinuous and, in addition, the set UU is a closed convex nonempty subset of VV. Using these ingredients, it follows from standard arguments on variational inequalities (see, for instance Theorem 2.8 in [22]) that there exists a unique element 𝒖ηtU\boldsymbol{u}_{\eta t}\in U such that

(Aηt𝒖ηt,𝒗𝒖ηt)V+φηt(𝒗)φηt(𝒖ηt)(𝒇(t),𝒗𝒖ηt)V𝒗U.\left(A_{\eta t}\boldsymbol{u}_{\eta t},\boldsymbol{v}-\boldsymbol{u}_{\eta t}\right)_{V}+\varphi_{\eta t}(\boldsymbol{v})-\varphi_{\eta t}\left(\boldsymbol{u}_{\eta t}\right)\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\eta t}\right)_{V}\quad\forall\boldsymbol{v}\in U. (5.5)

Denote 𝒖η(t)=𝒖ηt\boldsymbol{u}_{\eta}(t)=\boldsymbol{u}_{\eta t}. Then, it follows from (5.3)-(5.5) that the element 𝒖η(t)U\boldsymbol{u}_{\eta}(t)\in U is the unique element which solves the variational inequality (5.1).

We now prove the continuity of the function t𝒖η(t):+Vt\mapsto\boldsymbol{u}_{\eta}(t):\mathbb{R}_{+}\rightarrow V. To this end, let t1,t2+t_{1},t_{2}\in\mathbb{R}_{+}and denote 𝒖η(ti)=𝒖i,𝜽(ti)=𝜽i,ζ(ti)=ζi,β(ti)=βi,𝒇(ti)=𝒇i\boldsymbol{u}_{\eta}\left(t_{i}\right)=\boldsymbol{u}_{i},\boldsymbol{\theta}\left(t_{i}\right)=\boldsymbol{\theta}_{i},\zeta\left(t_{i}\right)=\zeta_{i},\beta\left(t_{i}\right)=\beta_{i},\boldsymbol{f}\left(t_{i}\right)=\boldsymbol{f}_{i}, for i=1,2i=1,2. We use standard arguments in (5.1) to find that

(𝒜ε(𝒖1)𝒜ε(𝒖2),𝜺(𝒖1)𝜺(𝒖2))Q+(P𝒖1P𝒖2,𝒖1𝒖2)V\displaystyle\left(\mathcal{A}\varepsilon\left(\boldsymbol{u}_{1}\right)-\mathcal{A}\varepsilon\left(\boldsymbol{u}_{2}\right),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{1}\right)-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{2}\right)\right)_{Q}+\left(P\boldsymbol{u}_{1}-P\boldsymbol{u}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)_{V}
(𝜽1𝜽2,𝜺(𝒖2)𝜺(𝒖1))Q+(ζ1+ζ2+,u2ν+u1ν+)L2(Γ3)\displaystyle\quad\leq\left(\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2},\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{2}\right)-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{1}\right)\right)_{Q}+\left(\zeta_{1}^{+}-\zeta_{2}^{+},u_{2\nu}^{+}-u_{1\nu}^{+}\right)_{L^{2}\left(\Gamma_{3}\right)}
+j(β1,𝒖1,𝒖2𝒖1)+j(β2,𝒖2,𝒖1𝒖2)+(𝒇1𝒇2,𝒖1𝒖2)V\displaystyle\quad+j\left(\beta_{1},\boldsymbol{u}_{1},\boldsymbol{u}_{2}-\boldsymbol{u}_{1}\right)+j\left(\beta_{2},\boldsymbol{u}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)+\left(\boldsymbol{f}_{1}-\boldsymbol{f}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)_{V}

Therefore, (3.2), (4.10), (4.21) and (2.1) yield

𝒖1𝒖2V\displaystyle\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V} (5.6)
c(𝜽1𝜽2Q+ζ1ζ2L2(Γ3)+β1β2L2(Γ3)+𝒇1𝒇2V)\displaystyle\quad\leq c\left(\left\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right\|_{Q}+\left\|\zeta_{1}-\zeta_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}+\left\|\beta_{1}-\beta_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}+\left\|\boldsymbol{f}_{1}-\boldsymbol{f}_{2}\right\|_{V}\right)

where cc is a positive constant. This inequality combined with (4.11) and the regularity of the functions 𝜽,ζ,β\boldsymbol{\theta},\zeta,\beta show that 𝒖ηC(+;V)\boldsymbol{u}_{\eta}\in C\left(\mathbb{R}_{+};V\right). Thus, we conclude the existence part in Lemma 5.1. The uniqueness part follows from of the unique solvability of (5.1) for each t+t\in\mathbb{R}_{+}. Finally, the estimate (5.2) follows by using simuilar arguments as those used in the proof of the inequality (5.6).

We now consider the operator Λ\Lambda which maps every element 𝜼=(𝜽,ζ,β)C(+;Q×L2(Γ3)×Z)\boldsymbol{\eta}=(\boldsymbol{\theta},\zeta,\beta)\in C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\times Z\right) into the element Λ𝜼\Lambda\boldsymbol{\eta} given by

Λ𝜼(t)=(0t(ts)𝜺(𝒖η(s))ds\displaystyle\Lambda\boldsymbol{\eta}(t)=\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\eta}(s)\right)ds\right. (5.7)
0tb(ts)uην+(s)ds,(β00t(γνβ(s)[R(uην(s))]2εa)+ds)+)\displaystyle\left.\quad\int_{0}^{t}b(t-s)u_{\eta\nu}^{+}(s)ds,\left(\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\eta\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds\right)^{+}\right)

for all t+t\in\mathbb{R}_{+}. Here 𝒖ηC(+;U)\boldsymbol{u}_{\eta}\in C\left(\mathbb{R}_{+};U\right) is the solution of Problem 𝒫ηV\mathcal{P}_{\eta}^{V} provided in Lemma 5.1. We have the following result.

Lemma 5.2 The operator Λ\Lambda takes values in the set C(+;Q×L2(Γ3)×Z)C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\times Z\right). Moreover, it has a unique fixed point 𝜼C(+;Q×L2(Γ3)×Z)\boldsymbol{\eta}^{*}\in C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\times Z\right).

Proof. Let 𝜼=(𝜽,ζ,β)C(+;Q×L2(Γ3)×Z)\boldsymbol{\eta}=(\boldsymbol{\theta},\zeta,\beta)\in C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\times Z\right) and denote by ω\omega the function defined by

ω(t)=(β00t(γνβ(s)[R(uην(s))]2εa)+𝑑s)+t+\omega(t)=\left(\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\eta\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds\right)^{+}\quad\forall t\in\mathbb{R}_{+} (5.8)

Then, using (3.26) and (3.27) it follows that ω(t)L2(Γ3)\omega(t)\in L^{2}\left(\Gamma_{3}\right) and, moreover, 0ω(t)β010\leq\omega(t)\leq\beta_{0}\leq 1 a.e. on Γ3\Gamma_{3}, for all t+t\in\mathbb{R}_{+}. We conclude from here that ω(t)Z\omega(t)\in Z. On the other hand, it is easy to see that tΛ(t)t\mapsto\Lambda(t) is a continuous function from +\mathbb{R}_{+}to the product space X=Q×L2(Γ3)×L2(Γ3)X=Q\times L^{2}\left(\Gamma_{3}\right)\times L^{2}\left(\Gamma_{3}\right), which concludes the first part of the lemma.

For the second part, we consider 𝜼1=(𝜽1,ζ1,β1),𝜼2=(𝜽2,ζ2,β2)C(+;Q×L2(Γ3)×Z)\boldsymbol{\eta}_{1}=\left(\boldsymbol{\theta}_{1},\zeta_{1},\beta_{1}\right),\boldsymbol{\eta}_{2}=\left(\boldsymbol{\theta}_{2},\zeta_{2},\beta_{2}\right)\in C\left(\mathbb{R}_{+};Q\times\right.\left.L^{2}\left(\Gamma_{3}\right)\times Z\right) and, for the sake of simplicity, we use the notation 𝒖ηi=𝒖i\boldsymbol{u}_{\eta_{i}}=\boldsymbol{u}_{i}, for i=i= 1,2 . Let nn\in\mathbb{N} and let t[0,n]t\in[0,n]. We use assumptions (3.3) and (3.14) on \mathcal{B} and bb, respectively, inequalities (2.2) and (2.1) as well as the bounds |R(u1ν(s))|L\left|R\left(u_{1\nu}(s)\right)\right|\leq L, |R(u2ν(s))|L,|β1(s)|1,|β2(s)|1\left|R\left(u_{2\nu}(s)\right)\right|\leq L,\left|\beta_{1}(s)\right|\leq 1,\left|\beta_{2}(s)\right|\leq 1, valid a.e. on Γ3\Gamma_{3}, for all s[0,t]s\in[0,t]. After some elementary calculation we deduce that

Λ𝜼1(t)Λ𝜼2(t)Xcmaxs[0,n](s)𝐐0t𝒖1(s)𝒖2(s)V𝑑s\displaystyle\left\|\Lambda\boldsymbol{\eta}_{1}(t)-\Lambda\boldsymbol{\eta}_{2}(t)\right\|_{X}\leq c\max_{s\in[0,n]}\|\mathcal{B}(s)\|_{\mathbf{Q}_{\infty}}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds (5.9)
+cmaxs[0,n]b(s)L(Γ3)0t𝒖1(s)𝒖2(s)V𝑑s\displaystyle\quad+c\max_{s\in[0,n]}\|b(s)\|_{L^{\infty}\left(\Gamma_{3}\right)}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds
+c(0t𝒖1(s)𝒖2(s)V𝑑s+0tβ1(s)β2(s)L2(Γ3)𝑑s)\displaystyle\quad+c\left(\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds+\int_{0}^{t}\left\|\beta_{1}(s)-\beta_{2}(s)\right\|_{L^{2}\left(\Gamma_{3}\right)}ds\right)

where, here and below, cc represent various positive constants which do not depend on nn. We conclude from here that

Λ𝜼1(t)Λ𝜼2(t)X\displaystyle\left\|\Lambda\boldsymbol{\eta}_{1}(t)-\Lambda\boldsymbol{\eta}_{2}(t)\right\|_{X} (5.10)
cn0t𝒖1(s)𝒖2(s)V𝑑s+c0tβ1(s)β2(s)L2(Γ3)𝑑s\displaystyle\quad\leq c_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds+c\int_{0}^{t}\left\|\beta_{1}(s)-\beta_{2}(s)\right\|_{L^{2}\left(\Gamma_{3}\right)}ds

where now cnc_{n} represent various positive constants which depend on nn. We now combine the inequalities (5.10) and (5.2) to deduce that

Λ𝜼1(t)Λ𝜼2(t)Xcn0t𝜼1(s)𝜼2(s)X𝑑s\left\|\Lambda\boldsymbol{\eta}_{1}(t)-\Lambda\boldsymbol{\eta}_{2}(t)\right\|_{X}\leq c_{n}\int_{0}^{t}\left\|\boldsymbol{\eta}_{1}(s)-\boldsymbol{\eta}_{2}(s)\right\|_{X}ds

and we note that, obviously, Q×L2(Γ3)×ZQ\times L^{2}\left(\Gamma_{3}\right)\times Z is a closed subset of the space XX. These ingredients allow us to apply Theorem 2.1 to conclude the proof.

Now, we have all the ingredients needed to prove Theorem 4.1.
Existence. Let 𝜼=(𝜽,ζ,β)C(+;Q×L2(Γ3)×Z)\boldsymbol{\eta}^{*}=\left(\boldsymbol{\theta}^{*},\zeta^{*},\beta^{*}\right)\in C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\times Z\right) be the fixed point of Λ\Lambda and let 𝒖,𝝈\boldsymbol{u}^{*},\boldsymbol{\sigma}^{*} be the functions defined by

𝒖(t)\displaystyle\boldsymbol{u}^{*}(t) =𝒖η(t)\displaystyle=\boldsymbol{u}_{\eta^{*}}(t) (5.11)
𝝈(t)\displaystyle\boldsymbol{\sigma}^{*}(t) =𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s))𝑑s\displaystyle=\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}^{*}(t)\right)+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}^{*}(s)\right)ds (5.12)

for all t+t\in\mathbb{R}_{+}. We recall that 𝜼=Λ𝜼\boldsymbol{\eta}^{*}=\Lambda\boldsymbol{\eta}^{*} and, using the equalities (5.7), (5.11) and assumption (3.14) we deduce that

𝜽(t)\displaystyle\boldsymbol{\theta}^{*}(t) =0t(ts)𝜺(𝒖(s))𝑑s\displaystyle=\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}^{*}(s)\right)ds (5.13)
ζ+(t)\displaystyle\zeta^{*+}(t) =0tb(ts)uν+(s)𝑑s\displaystyle=\int_{0}^{t}b(t-s)u_{\nu}^{*+}(s)ds (5.14)
β(t)\displaystyle\beta^{*}(t) =(β00t(γνβ(s)[R(uν(s))]2εa)+𝑑s)+\displaystyle=\left(\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta^{*}(s)\left[R\left(u_{\nu}^{*}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds\right)^{+} (5.15)

for all t+t\in\mathbb{R}_{+}. We show that (𝒖,𝝈,β)\left(\boldsymbol{u}^{*},\boldsymbol{\sigma}^{*},\beta^{*}\right) satisfies the system (4.16)-(4.18).
First, we note that (4.16) is a direct consequence of (5.12). Next, we write the variational inequality (5.1) for 𝜼=𝜼\boldsymbol{\eta}=\boldsymbol{\eta}^{*} and use the equalities (5.11)-(5.14) to see that (4.17) holds. And, finally, we claim that (4.18) also holds. Indeed, let ω\omega^{*} be the function defined by

ω(t)=β00t(γνβ(s)[R(uν(s))]2εa)+𝑑st+\omega^{*}(t)=\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta^{*}(s)\left[R\left(u_{\nu}^{*}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds\quad\forall t\in\mathbb{R}_{+} (5.16)

A careful examination of equalities (5.16) and (5.15) show that the following properties hold, a.e. on Γ3:tω(t)\Gamma_{3}:t\mapsto\omega^{*}(t) is a non increasing function, ω(0)=β00\omega(0)=\beta_{0}\geq 0 and, if there exists t0+t_{0}\in\mathbb{R}_{+}such that ω(t0)=0\omega\left(t_{0}\right)=0, then ω(t)=0\omega(t)=0 for all tt0t\geq t_{0}. We deduce from here that ω(t)0\omega^{*}(t)\geq 0 for any t+t\in\mathbb{R}_{+}. Therefore, since (5.15) and (5.16) imply that β(t)=ω(t)+\beta^{*}(t)=\omega^{*}(t)^{+}we find that

β(t)=ω(t)t+\beta^{*}(t)=\omega^{*}(t)\quad\forall t\in\mathbb{R}_{+} (5.17)

Equality (4.18) is now a direct consequence of the equalities (5.16) and (5.17).
This proves that the triple (𝒖,𝝈,β)\left(\boldsymbol{u}^{*},\boldsymbol{\sigma}^{*},\beta^{*}\right) represents a solution of Problem 𝒫V\mathcal{P}^{V}. The regularity expressed in (4.19) is a direct consequence of the Lemmas 5.1 and 5.2 , combined with assumptions (3.2) and (3.3).

Uniqueness. The uniqueness of the solution follows from the uniqueness of the fixed point of operator Λ\Lambda defined by (5.7) combined with the unique solvability of Problem
𝒫ηV\mathcal{P}_{\eta}^{V}. Indeed, let (𝒖,𝝈,β)(\boldsymbol{u},\boldsymbol{\sigma},\beta) be a solution of Problem 𝒫V\mathcal{P}^{V} which satisfies (4.19) and let 𝜼=(𝜽,ζ,β)C(+;Q×L2(Γ3)×Z)\boldsymbol{\eta}=(\boldsymbol{\theta},\zeta,\beta)\in C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\times Z\right) be given by

𝜼(t)=\displaystyle\boldsymbol{\eta}(t)= (0t(ts)𝜺(𝒖(s))ds\displaystyle\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds\right. (5.18)
0tb(ts)uν+(s)ds,(β00t(γνβ(s)[R(uν(s))]2εa)+ds)+)\displaystyle\left.\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,\left(\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds\right)^{+}\right)

for all t+t\in\mathbb{R}_{+}. We substitute equality (4.16) in (4.17) and, using (5.18), we deduce that 𝒖\boldsymbol{u} satisfies the inequality (5.1), at each time moment t+t\in\mathbb{R}_{+}. On the other hand, it follows from Lemma 5.1 that Problem 𝒫ηV\mathcal{P}_{\eta}^{V} has a unique solution, denoted 𝒖η\boldsymbol{u}_{\eta}, with regularity 𝒖ηC(+;U)\boldsymbol{u}_{\eta}\in C\left(\mathbb{R}_{+};U\right). Therefore, we conclude that

𝒖=𝒖η.\boldsymbol{u}=\boldsymbol{u}_{\eta}. (5.19)

We use (5.19) to see that

0t(ts)𝜺(𝒖η(s))𝑑s=0t(ts)𝜺(𝒖(s))𝑑s0tb(ts)uην+(s)𝑑s=0tb(ts)uν+(s)𝑑s(β00t(γνβ(s)[R(uην(s))]2εa)+𝑑s)+=(β00t(γνβ(s)[R(uν(s))]2εa)+𝑑s)+\begin{gathered}\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\eta}(s)\right)ds=\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds\\ \int_{0}^{t}b(t-s)u_{\eta\nu}^{+}(s)ds=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\\ \left(\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\eta\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds\right)^{+}\\ =\left(\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}ds\right)^{+}\end{gathered}

for all t+t\in\mathbb{R}_{+}. Therefore, (5.7) and (5.18) show that Λ𝜼=𝜼\Lambda\boldsymbol{\eta}=\boldsymbol{\eta} and, using the uniqueness part in Lemma 5.2, we deduce that

η=η.\eta=\eta^{*}. (5.20)

We now use (5.19), (5.20) and (5.11) to see that

𝒖=𝒖η=𝒖η=𝒖.\boldsymbol{u}=\boldsymbol{u}_{\eta}=\boldsymbol{u}_{\eta^{*}}=\boldsymbol{u}^{*}. (5.21)

Then we use (4.16), (5.21) and (5.12) to deduce that

𝝈(t)\displaystyle\boldsymbol{\sigma}(t) =𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s))𝑑s\displaystyle=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds (5.22)
=𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s))𝑑s=𝝈(t)t+\displaystyle=\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}^{*}(t)\right)+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}^{*}(s)\right)ds=\boldsymbol{\sigma}^{*}(t)\quad\forall t\in\mathbb{R}_{+}

and, finally, (5.20) and (4.18) show that

β=β.\beta=\beta^{*}. (5.23)

The uniqueness part of the theorem is now a consequence of equalities (5.21), (5.22) and (5.23).

References

[1] E. Bonetti and G. Bonfanti and R. Rossi, Analysis of a unilateral contact problem taking into account adhesion and friction, Journal of Differential Equations, 253, no. 2 (2012), pp. 438-462.
[2] O. Chau and J.R. Fernández and M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, J. Comp. Appl. Math., 159 (2003), pp. 431-465.
[3] O. Chau and M. Shillor and M. Sofonea, Dynamic frictionless contact with adhesion, J. Angew. Math. Phys. (ZAMP), 55 (2004), pp. 32-47.
[4] M. Cocu and R. Rocca, Existence results for unilateral quasistatic contact problems with friction and adhesion, Math. Model Numer. Anal., 34 (2000), pp. 981-1001.
[5] C. Corduneanu, Problèmes globaux dans la théorie des équations intégrales de Volterra, Ann. Math. Pure Appl., 67 1965, pp. 349-363.
[6] A.D. Drozdov, Finite Elasticity and Viscoelasticity-A Course in the Nonlinear Mechanics of Solids, World Scientific, Singapore, 1996.
[7] M. Frémond, Equilibre des structures qui adhèrent à leur support, C. R. Acad. Sci. Paris, 295, Série II (1982), pp. 913-916.
[8] M. Frémond, Adhérence des solides, J. Mécanique Théorique et Appliquée, 6 (1987), pp. 383-407.
[9] M. Frémond, Non-Smooth Thermomechanics,Springer, Berlin, 2002.
[10] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,Studies in Advanced Mathematics 30, American Mathematical Society-International Press, 2002.
[11] J. Jarušek and M. Sofonea, On the solvability of dynamic elastic-visco-plastic contact problems with adhesion, Annals of AOSR, Series on Mathematics and its Applications, 1 (2009), pp. 191-214.
[12] A. Klarbring and A. Mikelič and M. Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci., 26 (1988), pp. 811-832.
[13] A. Klarbring and A. Mikelič and M. Shillor, On friction problems with normal compliance, Nonlinear Analysis, 13 (1989), pp. 935-955.
[14] J.J. Massera and J.J. Schäffer, Linear Differential Equations and Function Spaces, Academic Press, New York, London, 1966.
[15] M. Raous and L. Cangémi and M. Cocu, A consistent model coupling adhesion, friction and unilateral contact,Comput. Methods Appl. Engrg., 177 (1999), pp. 383-399.
[16] J. Rojek and J.J. Telega, Contact problems with friction, adhesion and wear in orthopaedic biomechanics. I: General developments, J. Theor. Appl. Mech., 39 (2001), pp. 655-677.
[17] J. Rojek and J.J. Telega and S. Stupkiewicz, Contact problems with friction, adhesion and wear in orthopaedic biomechanics. II: Numerical implementation and application to implanted knee joints, J. Theor. Appl. Mech., 39 (2001), pp. 679-706.
[18] M. Shillor and M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics 655, Springer, Berlin, 2004.
[19] M. Sofonea and C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoeplastic frictionless contact problems, Communications on Pure and Applied Analysis, 7 (2008), pp. 645-658.
[20] M. Sofonea and W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics 276, Chapman-Hall/ CRC Press, New-York, 2006.
[21] M. Sofonea and A. Matei, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics 18, Springer, New York, 2009.
[22] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge, 2012.
[23] M. Sofonea and F. Patrulescu, Analysis of a history-dependent frictionless contact problem, Mathematics and Mechanics of Solids, 18 (2013), pp. 409-430.
[24] M. Sofonea and F. Patrulescu and A. Farcaş, A viscoplastic contact problem with normal compliance, unilateral constraint and memory term, Appl. Math. Opt., 69, no. 2 (2014), pp. 175-198.
[25] A. Touzaline, Analysis of a contact adhesive problem with normal compliance and nonlocal friction, Ann. Polon. Math., 104, no. 2 (2012), pp. 175-188.
[26] A. Touzaline, Study of a viscoelastic frictional contact problem with adhesion, Comment. Math. Univ. Carolin., 52, no. 2 (2011), pp. 257-272.

2014

Related Posts