Posts by Cristian Alecsa

Abstract

The aim of this paper is to present some sufficient conditions for the existence and uniqueness of fixed points for (ϕ – ψ) type contractive multi-valued operators defined by altering distances. Furthermore, our main result consists of two theorems, one involving the convergence of the Picard successive approximation sequence to a fixed point of the multivalued ϕ -ψ operator, and a theorem concerning a more general form for a fixed point result for this type of mappings.

Authors

Cristian Daniel Alecsa
Babes-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Adrian Petrusel
Babes-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania
Academy of Romanian Scientists, Bucharest, Romania

Keywords

.Fixed point; (ϕ −ψ)-contraction; Altering distance; Multivalued operator; Weakly contractive mapping

Paper coordinates

C. D. Alecsa, A. Petrusel, On some fixed point theorems for multi-valued operators by altering distance technique, J. Nonlinear Var. Anal., 1 (2017) no. 2, pp. 237-251.

PDF

About this paper

Journal

J. Nonlinear Var. Anal.

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

[1] Y. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory and Its Applications: The Israel M. Glazman memorial volume, Oper. Theory, Adv. Appl. (I. Gohberg- Ed.), Birkhauser,  Basel, 1997, 7?2.

[2] A. Amini-Harandi, A. Petrusel, A fixed point theorem by altering distance technique in complete metric spaces, Miskolc Math. Notes, 14 (2013), 11-17.

[3] S. Dhompongsa, H. Yingtaweesittikul, Diametrically contractive multivalued mappings, Fixed Point Theory Appl. 2007 (2007), Article ID 19745.

[4] P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 406368.

[5] T. Kamran, Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, Math. Comput. Model. 54 (2011), 2772-2777.

[6] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9.

[7] V. L. Lazar, Fixed point theory for multivalued ϕ-contractions, Fixed Point Theory Appl. 2011 (2011), Article ID 50.

[8] T. Lazar, G. Mot¸, G. Petrusel, S. Szentesi, The theory of Reich’s fixed point theorem for multivalued operators, Fixed Point Theory Appl. 2010 (2010), Article ID 178421.

[9] Z. Liu, Z. Wu, S.M. Kang, S. Lee, Some fixed point theorems for nonlinear set-valued contractive mappings, J. Appl. Math. 2012 (2012) Article ID 786061.

[10] S. Moradi, A. Farajzadeh, On the fixed point of (ψ −ϕ)-weak and generalized (ψ −ϕ)-weak contraction mappings, Appl. Math. Lett. 25 (2012), 1257?262.

[11] S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.

[12] T.P. Petru, M. Boriceanu, Fixed point results for generalized ϕ-contraction on a set with two metrics, Top. Method Nonlin. Anal. 33 (2009), 315-326

[13] A. Petrus¸el, Multivalued weakly Picard operators and applications, Sci. Math. Japon. 59 (2004), 169-202.

[14] A. Petrusel, peratorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.

[15] A. Petrusel, I.A. Rus, Multivalued Picard and weakly Picard operators, Fixed Point Theory Appl. (J. Garcia Falset, E. Llorens Fuster, B. Sims – Eds.), Yokohama Publ., 2004, 207-226.

[16] G. Petrusel, T. Lazar, V.L. Lazar, Fixed points and coupled fixed points for multi-valued (ψ −ϕ)-contractions in b-metric spaces, Applied Anal. Optimization, 1 (2017), 99-112.

[17] O. Popescu, Fixed points for (ψ −ϕ)-weak contractions, Appl. Math. Lett. 24 (2011), 1-4.

[18] O. Popescu, G. Stan, A generalization of Nadler’s fixed point theorem, Results Math. (2017), DOI 10.1007/s00025-017- 0694-4

[19] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683?693.

[20] B. E. Rhoades, H.K. Pathak, S.N. Mishra, Some weakly contractive mappings theorems in partially ordered spaces and applications, Demonstratio Math. 45 (2012), 621-636.

[21] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.

[22] I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.

[23] Z. Xue, Fixed points theorems for generalized weakly contractive mappings, Bull. Aust. Math. Soc. 93 (2016), 321?29.

Paper (preprint) in HTML form

ON SOME FIXED POINT THEOREMS FOR MULTI-VALUED OPERATORS BY ALTERING DISTANCE TECHNIQUE

CRISTIAN DANIEL ALECSA 1,2,∗, ADRIAN PETRUŞEL 1,3,∗
1 Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania
2 Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania
3 Academy of Romanian Scientists, Bucharest, Romania
Abstract

The aim of this paper is to present some sufficient conditions for the existence and uniqueness of fixed points for ( φψ\varphi-\psi ) type contractive multi-valued operators defined by altering distances. Furthermore, our main result consists of two theorems, one involving the convergence of the Picard successive approximation sequence to a fixed point of the multivalued φψ\varphi-\psi operator, and a theorem concerning a more general form for a fixed point result for this type of mappings.

J. Nonlinear Var. Anal. 1 (2017), No. 2, pp. 237-251

Available online at http://jnva.biemdas.com

Keywords. Fixed point; ( φψ\varphi-\psi )-contraction; Altering distance; Multivalued operator; Weakly contractive mapping.
2010 Mathematics Subject Classification. 47H10,54H2547\mathrm{H}10,54\mathrm{H}25.

1. Preliminaries

In this section, we will present some preliminary notions and fixed point results for single-valued self-mappings satisfying some altering distance type conditions in a complete metric space.

In [6], Khan, Swaleh and Sessa gave sufficient conditions such that an operator has a unique fixed point. This contractive-type operator satisfy the condition

ψ(d(Tx,Ty))kψ(d(x,y))\psi(d(Tx,Ty))\leq k\psi(d(x,y))

for each elements x,yx,y of a complete metric space (X,d)(X,d), where ψ:[0,)[0,)\psi:[0,\infty)\rightarrow[0,\infty) is endowed with the following properties

ψ(t)=0 if and only if t=0\displaystyle\psi(t)=0\text{ if and only if }t=0
ψ is continuous and nondecreasing.\displaystyle\psi\text{ is continuous and nondecreasing. }
00footnotetext: *Corresponding author.
E-mail addresses: cristian.alecsa@math.ubbcluj.ro (C.D. Alecsa), petrusel@math.ubbcluj.ro (A. Petruşel).
Received June 5, 2017; Accepted July 18, 2017.

Furthermore, Alber and Guerre-Delabriere in [1] gave a different generalization, for mappings satisfying the assumption

d(Tx,Ty)d(x,y)φ(d(x,y)), where\displaystyle d(Tx,Ty)\leq d(x,y)-\varphi(d(x,y)),\text{ where }
φ:[0,)[0,) is also nondecreasing and continuous\displaystyle\varphi:[0,\infty)\rightarrow[0,\infty)\text{ is also nondecreasing and continuous }
φ(t)=0 if and only if t=0\displaystyle\varphi(t)=0\text{ if and only if }t=0
limtφ(t)=\displaystyle\lim_{t\rightarrow\infty}\varphi(t)=\infty

Then in [19], Rhoades showed that the last assumption is not necessary for the existence and uniqueness of the fixed points of the above self-mappings. Generalizations for this type of mappings were done by Dutta et al. in [4] for self-mappings ff defined on a complete metric space ( X,dX,d ), satisfying

ψ(d(Tx,Ty))ψ(d(x,y))φ(d(x,y)), where\displaystyle\psi(d(Tx,Ty))\leq\psi(d(x,y))-\varphi(d(x,y)),\text{ where }
ψ,φ:[0,)[0,) are both nondecreasing and continuous functions,\displaystyle\psi,\varphi:[0,\infty)\rightarrow[0,\infty)\text{ are both nondecreasing and continuous functions, }
ψ(t)=φ(t)=0 if and only if t=0\displaystyle\psi(t)=\varphi(t)=0\text{ if and only if }t=0

A very interesting approach was done by Amini-Harandi and Petruşel in [2], where the authors studied sufficient conditions for the existence and uniqueness of the fixed points for an operator TT satisfing the following assumption

u(d(Tx,Ty))v(d(x,y))u(d(Tx,Ty))\leq v(d(x,y))

where the self-mappings uu and vv defined on [0,)[0,\infty) satisfy some relaxed conditions. The authors also gave some interesting corollaries showing that their theorem is a real generalization of the already presented type of mappings.

Moreover, regarding the weakly contractive condition for a single-valued operator, Rhoades et al. [20] presented other types of generalizations in the framework of partially ordered metric spaces. As an example for this type of mappings we suppose that

d(fx,fy)φ(d(x,y))ψ(d(x,y))d(fx,fy)\leq\varphi(d(x,y))-\psi(d(x,y))

where the operators ψ,φ\psi,\varphi have the following properties:
i) φ,ψ\varphi,\psi are both positive on (0,)(0,\infty) with ψ(0)=φ(0)\psi(0)=\varphi(0),
ii) φ(t)ψ(t)<t\varphi(t)-\psi(t)<t,
iii) φ\varphi upper semicontinuous and nondecreasing,
iv) ψ\psi lower semicontinuous and nonincreasing.

Last, but not least, for fixed point results involving other generalizations of the weakly contractive condition for single-valued mappings we refer to [10], [17] and [23].

Concerning the case of multi-valued operators, T. Lazar et al. [8] presented an exhaustive study of some qualitative properties concerning Reich type multi-valued operators. Moreover, V. Lazăr [7] extended the results concerning the case of multi-valued φ\varphi-type contractions.
T.P. Petru and M. Boriceanu [12] gave some fixed point results for φ\varphi-contractions in a set endowed with two metrics.

In all the articles [8], [7] and [12], the comparison function φ\varphi used for the case of φ\varphi-contractions satisfy the following properties:
i) φ(0)=0\varphi(0)=0,
ii) φ(t)>0\varphi(t)>0 for t>0t>0,
iii) φk(t)0\varphi^{k}(t)\rightarrow 0, for each t>0t>0 for kk\rightarrow\infty.

Notice that φ\varphi is not necessarily continuous on [0,)[0,\infty), but in [12] the continuity of the mapping was additionally assumed. Furthermore, an important property of comparison functions is the fact that φ(t)<t\varphi(t)<t, for each t>0t>0.

As a conclusion, there are two distinct classes of mappings involved in the generalizations of contractivetype operators. There are comparison functions, on one hand, in many cases denoted by φ\varphi. On the other, there is the case of altering distance functions for which the most important conditions are continuity or semicontinuity properties and a certain monotonicity. We also notice that the weakly contractive mappings used in [20] are combination of these types of self-mappings.

Regarding the case of multi-valued operators, in 2011, Kamran and Kiran [5] presented some rezults involving altering distance type functionals. In this article, more precisely, in [Theorem 4.2] in [5], a special type of altering distance function denoted by θ\theta was used. This mapping satisfies the following conditions on an interval [0,A)[0,A), where A is real number strictly greater than 0 , i.e.,
(i) θ\theta is nondecreasing on [0,A)[0,A),
(ii) θ(t)>0\theta(t)>0, for each t(0,A)t\in(0,A),
(iii) θ\theta subadditive on (0,A)(0,A) and
(iv) 𝜽(at)𝒂𝜽(t)\boldsymbol{\theta}(at)\leq\boldsymbol{a}\boldsymbol{\theta}(t), for each a>0a>0 and t[0,A)t\in[0,A).

Also, in 2012, Liu et al. [9] gave a similar theorem, namely [Theorem 2.3], were the functional φ\varphi is similar to the functional α\alpha from [5]. From the same article we observe that the conditions put upon the altering distance mapping θ\theta are somewhat different. For the sake of completeness, we recall them here

(a) θ is nondecreasing on +,\displaystyle\text{ (a) }\theta\text{ is nondecreasing on }\mathbb{R}^{+},
(b) θ(t)>0, when t(0,),\displaystyle\text{(b) }\theta(t)>0,\text{ when }t\in(0,\infty),
(c) θ is subadditive on (0,),\displaystyle\text{ (c) }\theta\text{ is subadditive on }(0,\infty),
(d) θ(+)=+and\displaystyle\text{ (d) }\theta\left(\mathbb{R}^{+}\right)=\mathbb{R}^{+}\text{and }
(e) θ is strictly inverse on +.\displaystyle\text{ (e) }\theta\text{ is strictly inverse on }\mathbb{R}^{+}.

Finally, concerning weakly contractive ( φψ\varphi-\psi ) contractive type multivalued operators, G. Petruşel et.al. in [16] presented a fixed point result for this kind of operators in the context of complete ordered b-metric spaces with coefficient s1s\geq 1, along with some theorems involving coupled fixed points. From [Theorem 2.2] of [16], a self multivalued operator T:XPcl(X)T:X\rightarrow P_{cl}(X) was defined by a contractive-type inequality, i.e.

φ(H(Tx,Ty))φ(d(x,y))ψ(d(x,y))\varphi(H(Tx,Ty))\leq\varphi(d(x,y))-\psi(d(x,y))

and sufficient conditions for the existence of fixed points for this kind of operators were studied. Here, the altering distance function φ:[0,)[0,)\varphi:[0,\infty)\rightarrow[0,\infty) satisfy the following

(iφ)φ continuous and strictly increasing,\displaystyle\left(i_{\varphi}\right)\varphi\text{ continuous and strictly increasing, }
(iiφ)φ(t)<t, for each t>0\displaystyle\left(ii_{\varphi}\right)\varphi(t)<t,\text{ for each }t>0
(iiφ)φ(a+b)φ(a)+b, for a,b[0,)\displaystyle\left(ii_{\varphi}\right)\varphi(a+b)\leq\varphi(a)+b,\text{ for }a,b\in[0,\infty)
(ivφ)φ(st)sφ(t), for each t[0,)\displaystyle\left(iv_{\varphi}\right)\varphi(st)\leq s\varphi(t),\text{ for each }t\in[0,\infty)

Also, the other altering distance function ψ:[0,)[0,)\psi:[0,\infty)\rightarrow[0,\infty) satisfy

(iψ)lim suptrψ(t)>0, for all r>0 and\displaystyle\left(i_{\psi}\right)\limsup_{t\rightarrow r}\psi(t)>0,\text{ for all }r>0\text{ and }
(iiψ)limt0+ψ(t)=0\displaystyle\left(ii_{\psi}\right)\lim_{t\rightarrow 0^{+}}\psi(t)=0

Moreover, we recognize that in contrast to the original usage of altering functions as in [4], the conditions from [16] on ψ\psi were relaxed and the conditions on the mapping φ\varphi were made more restrictive, since the condition ( iiφii_{\varphi} ) is a comparison type condition. So, in this sense, these weakly contractive-type selfmappings are a combination of altering distances and comparison functions as the operators defined in [20].

Finally, in [3] the authors presented some fixed point theorems for multivalued operators and in [18] Popescu et.al. extended these types of comparison based multivalued operators, i.e. T:XPb,cl(X)T:X\rightarrow P_{b,cl}(X), such that H(Tx,Ty)φ(d(x,y))H(Tx,Ty)\leq\varphi(d(x,y)), for each x,yx,y from the complete metric space (X,d)(X,d). Here, the mapping φ\varphi satisfies the following assumptions
(1) φ(x)x\varphi(x)\leq x, for each x[0,)x\in[0,\infty),
(2) φ(x+y)φ(x)+φ(y)\varphi(x+y)\leq\varphi(x)+\varphi(y), for all x,y[0,)x,y\in[0,\infty),
(3) φ(x)=0\varphi(x)=0 if and only if x=0x=0 and
(4) for any ε>0\varepsilon>0, there exists δ>ε\delta>\varepsilon such that ε<t<δ\varepsilon<t<\delta implies φ(t)ε\varphi(t)\leq\varepsilon.

Furthermore, condition (4) defined for the above mapping φ\varphi can be considered as a local type comparison function. Also, the authors in [18] extended the results of the authors of [3] from the case of hyperconvex metric spaces to the usual metric spaces. Furthermore, since they worked in a less restrictive framework, they have put an important assumption regarding the well known diameter functional and so they used the condition that the multivalued operator has bounded values.

In the last part of this section, fundamental notions and concepts for the fixed point theory of multivalued operators are used. For a general perspective regarding these terminologies for multi-valued mappings, we refer to [7], [11], [13], [15], [21] and [22].

Let XX be a nonempty set. First of all, we shall use the following class of sets
𝒫(X):={Y/YX},P(X):={Y𝒫(X)/Y}\mathscr{P}(X):=\{Y/Y\subset X\},\quad P(X):=\{Y\in\mathscr{P}(X)/Y\neq\emptyset\}.
Now, for the case when ( X,dX,d ) is a metric space, we recall that YXY\subseteq X is bounded if and only if δ(Y):=sup{d(a,b)/a,bY}<+\delta(Y):=\sup\{d(a,b)/a,b\in Y\}<+\infty, where δ\delta is the usual diameter functional on [0,)[0,\infty).

Now, we define the following families of sets:
Pb(X):={YP(X)/YP_{b}(X):=\{Y\in P(X)/Y bounded },Pcl(X):={YP(X)/Y\},\quad P_{cl}(X):=\{Y\in P(X)/Y closed }\},
Pcp(X):={YP(X)/YP_{cp}(X):=\{Y\in P(X)/Y compact },Pb,cl(X):=Pb(X)Pcl(X)\},\quad P_{b,cl}(X):=P_{b}(X)\cap P_{cl}(X).
Moreover, if YXY\subseteq X and T:YP(X)T:Y\rightarrow P(X) is a multi-valued operator, then we define the following useful symbols. FT:={xY/xTx}F_{T}:=\{x\in Y/x\in Tx\} is the fixed point set of the operator T,(SF)T:={xY/{x}=Tx}T,(SF)_{T}:=\{x\in Y/\{x\}=Tx\} denotes the strict fixed point set of the multi-valued operator TT and by Graph(T):={(x,y)Y×X/yTx}\operatorname{Graph}(T):=\{(x,y)\in Y\times X/y\in Tx\} we denote the graph of the multivalued operator TT. Also, if T:XP(X)T:X\rightarrow P(X), then by T0:=1XT^{0}:=1_{X}, T1:=T,,Tn+1:=TTnT^{1}:=T,\ldots,T^{n+1}:=T\circ T^{n}, for nn\in\mathbb{N} we denote the iterates of the operator TT, where T(A):=aATaT(A):=\bigcup_{a\in A}Ta, for AXA\subset X.

Furthermore, we shall frequently use the following generalized functionals in the next section, so we shall recall them.
The gap functional D:𝒫(X)×𝒫(X)+{+}D:\mathscr{P}(X)\times\mathscr{P}(X)\rightarrow\mathbb{R}_{+}\cup\{+\infty\} is defined as

D(A,B)={inf{d(a,b)/aA,bB},A and B0,A= and B=+, otherwise D(A,B)=\begin{cases}\inf\{d(a,b)/a\in A,b\in B\},&A\neq\emptyset\text{ and }B\neq\emptyset\\ 0,&A=\emptyset\text{ and }B=\emptyset\\ +\infty,&\text{ otherwise }\end{cases}

The excess generalized functional ρ:𝒫(X)×𝒫(X)+{+}\rho:\mathscr{P}(X)\times\mathscr{P}(X)\rightarrow\mathbb{R}_{+}\cup\{+\infty\} is defined as

ρ(A,B)={sup{D(a,B)/aA},A and B0,A=+,A and B=\rho(A,B)=\begin{cases}\sup\{D(a,B)/a\in A\},&A\neq\emptyset\text{ and }B\neq\emptyset\\ 0,&A=\emptyset\\ +\infty,&A\neq\emptyset\text{ and }B=\emptyset\end{cases}

The Hausdorff-Pompeiu generalized functional H:𝒫(X)×𝒫(X)+{+}H:\mathscr{P}(X)\times\mathscr{P}(X)\rightarrow\mathbb{R}_{+}\cup\{+\infty\} is defined as

H(A,B)={max{ρ(A,B),ρ(B,A)},A and B0,A= and B=+, otherwise H(A,B)=\begin{cases}\max\{\rho(A,B),\rho(B,A)\},&A\neq\emptyset\text{ and }B\neq\emptyset\\ 0,&A=\emptyset\text{ and }B=\emptyset\\ +\infty,&\text{ otherwise }\end{cases}

For the sake of completeness, we recall now a very useful concept in fixed point theory for multi-valued operators. This is a basic concept known by the name of multivalued weakly Picard operator. It is defined as follows.

Definition 1.1. Let ( X,dX,d ) be a metric space and T:XP(X)T:X\rightarrow P(X) is called a multivalued weakly Picard operator, briefly a MWP operator, if for each xXx\in X and for each yTxy\in Tx, there exists a sequence (xn)nX\left(x_{n}\right)_{n\in\mathbb{N}}\in X, such that:
(i) x0=xx_{0}=x and x1=yx_{1}=y,
(ii) xn+1Txnx_{n+1}\in Tx_{n}, for each nn\in\mathbb{N} and
(iii) the sequence (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} is convergent to a fixed point of TT.

Finally, a sequence (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} defined by the properties (i) and (ii) is called a sequence of successive approximations.

2. Main results

The first main result of this section concerns the fixed points of ( φψ\varphi-\psi ) multivalued operators. Let us mention first that, in [16], G. Petruşel et.al. presented some fixed point results for this type of multivalued operators on complete ordered b-metric spaces. In the same article, the authors constructed a sequence of successive approximations and showed that this sequence is convergent to a fixed point of the multivalued operator. The proof of [Theorem 2.2] in [16] contains a certain gap. The authors consider an ε~\tilde{\varepsilon} at each step and then, using the reductio ad absurdum argument, chose ε~\tilde{\varepsilon}, such that ε~<limnψ(δn)\tilde{\varepsilon}<\lim_{n\rightarrow\infty}\psi\left(\delta_{n}\right). Since ε~\tilde{\varepsilon} was already constructed at each step (as εn~\tilde{\varepsilon_{n}} ) and the sequence δn\delta_{n} was not given there, this technique is not valid. Furthermore, trying to show that the sequence ( xnx_{n} ) is Cauchy, the authors used the fact that d(xm(k)+1,xn(k)+1)H(T(xm(k)),T(xn(k)))+ε~d\left(x_{m(k)+1},x_{n(k)+1}\right)\leq H\left(T\left(x_{m(k)}\right),T\left(x_{n(k)}\right)\right)+\tilde{\varepsilon}, which, by the well known lemma of Nadler, is not necessarily true.

Our first purpose is to correct these arguments, by imposing the additional assumption that δ(Tnx)0\delta\left(T^{n}x\right)\rightarrow 0 as nn\rightarrow\infty. Our assumption is inspired by an idea from [3] and [18]. Based on this assumption and using the technique from [16], we give a fixed point theorem for ( φψ\varphi-\psi ) multivalued operators. At the same time, we relax some conditions on the altering distance functions (such as continuity) and we get rid off the property of comparison functions, i.e. φ(t)<t\varphi(t)<t.

Theorem 2.1. Let ( X,dX,d ) be a complete metric space and T:XPb,cl(X)T:X\rightarrow P_{b,cl}(X) a multivalued operator, that satisfies the following

φ(H(Tx,Ty))φ(d(x,y))ψ(d(x,y)), for each x,yX\varphi(H(Tx,Ty))\leq\varphi(d(x,y))-\psi(d(x,y)),\text{ for each }x,y\in X

where the mappings φ\varphi and ψ\psi satisfy

(H1)φ,ψ:[0,)[0,),\displaystyle(H1)\varphi,\psi:[0,\infty)\rightarrow[0,\infty),
(H2)φ is usc and ψ is lsc\displaystyle(H2)\varphi\text{ is usc and }\psi\text{ is lsc }
(H3)φ(0)=ψ(0)=0 and φ(t),ψ(t)>0, for each t>0,\displaystyle(H3)\varphi(0)=\psi(0)=0\text{ and }\varphi(t),\psi(t)>0,\text{ for each }t>0,
(H4)φ is (strictly) increasing,\displaystyle(H4)\varphi\text{ is (strictly) increasing, }
(H5)φ(a+b)φ(a)+b, for each a>0 and b0.\displaystyle(H5)\varphi(a+b)\leq\varphi(a)+b,\text{ for each }a>0\text{ and }b\geq 0.

Also, suppose that δ(Tnx)0\delta\left(T^{n}x\right)\rightarrow 0 as nn\rightarrow\infty, for each xXx\in X. Then, the multi-valued operator TT has at least one fixed point xFTx^{*}\in F_{T}. Moreover, if (SF)T(SF)_{T}\neq\emptyset, then FT=(SF)T={x}F_{T}=(SF)_{T}=\left\{x^{*}\right\}.

Proof. (i) Let x0Xx_{0}\in X be arbitrary taken and let x1Tx0x_{1}\in Tx_{0}. Also, consider the sequence (𝜹n)n\left(\boldsymbol{\delta}_{n}\right)_{n\in\mathbb{N}}, with δn>0\delta_{n}>0, for each nn\in\mathbb{N}, with limnδn=0\lim_{n\rightarrow\infty}\delta_{n}=0. Define ε1min{δ1,t1}\varepsilon_{1}\leq\min\left\{\delta_{1},t_{1}\right\}, where

t1:=φ(d(x0,x1))φ(H(Tx0,Tx1))t_{1}:=\varphi\left(d\left(x_{0},x_{1}\right)\right)-\varphi\left(H\left(Tx_{0},Tx_{1}\right)\right)

Now, t1t_{1} is well defined, because x0x_{0} and x1x_{1} were already constructed. Furthermore, we can suppose that x0x1x_{0}\neq x_{1}, because, if x0x_{0} and x1x_{1} were identical, then x0Tx0x_{0}\in Tx_{0}, so x0x_{0} was a fixed point for the operator TT. Now, for x1Tx0x_{1}\in Tx_{0} and ε1\varepsilon_{1}, there exists x2Tx1x_{2}\in Tx_{1}, such that

d(x2,x1)H(Tx1,Tx0)+ε1d\left(x_{2},x_{1}\right)\leq H\left(Tx_{1},Tx_{0}\right)+\varepsilon_{1}

By induction, we can create the sequence (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} as follows.
Let xn1Txn2x_{n-1}\in Tx_{n-2} and xnTxn1x_{n}\in Tx_{n-1} already constructed. For xnTxn1x_{n}\in Tx_{n-1} and εn>0\varepsilon_{n}>0, there exists xn+1Txnx_{n+1}\in Tx_{n}, such that

ρn:=d(xn,xn+1)H(Txn1,Txn)+εn\rho_{n}:=d\left(x_{n},x_{n+1}\right)\leq H\left(Tx_{n-1},Tx_{n}\right)+\varepsilon_{n}

So, we obtain that

φ(ρn)<φ(ρn1)ψ(ρn1)+εn.\varphi\left(\rho_{n}\right)<\varphi\left(\rho_{n-1}\right)-\psi\left(\rho_{n-1}\right)+\varepsilon_{n}.

Also, we use εn\varepsilon_{n}, such that εnmin{δn,tn}\varepsilon_{n}\leq\min\left\{\delta_{n},t_{n}\right\}, with

tn:=φ(ρn1)φ(H(Txn1,Txn))t_{n}:=\varphi\left(\rho_{n-1}\right)-\varphi\left(H\left(Tx_{n-1},Tx_{n}\right)\right)

Now, if there exists nn\in\mathbb{N}, such that xn1=xnx_{n-1}=x_{n}, then xn1Txn1x_{n-1}\in Tx_{n-1}, i.e. xn1FTx_{n-1}\in F_{T} and the proof is over. So, we can suppose that xn1xnx_{n-1}\neq x_{n}, for each nn\in\mathbb{N}, so ρn>0\rho_{n}>0, for each nn\in\mathbb{N}. Furthermore, at each step we can suppose that H(Txn1,Txn)0H\left(Tx_{n-1},Tx_{n}\right)\neq 0. Assuming the contrary, we obtain that Txn1=TxnTx_{n-1}=Tx_{n}, so xnFTx_{n}\in F_{T} and the proof is over. In this way, we applied in a valid way assumption (H5). We know that

φ(H(Txn1,Txn))φ(d(xn1,xn))ψ(d(xn1,xn))<φ(d(xn1,xn))\varphi\left(H\left(Tx_{n-1},Tx_{n}\right)\right)\leq\varphi\left(d\left(x_{n-1},x_{n}\right)\right)-\psi\left(d\left(x_{n-1},x_{n}\right)\right)<\varphi\left(d\left(x_{n-1},x_{n}\right)\right)

It follows that

φ(H(Txn1,Txn))φ(ρn1)ψ(ρn1)<φ(ρn1)\varphi\left(H\left(Tx_{n-1},Tx_{n}\right)\right)\leq\varphi\left(\rho_{n-1}\right)-\psi\left(\rho_{n-1}\right)<\varphi\left(\rho_{n-1}\right)

The last inequality is strict, because if it was not a strict inequality, then ψ(ρn1)=0\psi\left(\rho_{n-1}\right)=0, that lead to ρn1=0\rho_{n-1}=0, which is false. So, defining tnt_{n} as above, it follows that tn>0t_{n}>0, for each nn\in\mathbb{N}. Furthermore,

φ(ρn)<φ(H(Txn1,Txn))+tn\varphi\left(\rho_{n}\right)<\varphi\left(H\left(Tx_{n-1},Tx_{n}\right)\right)+t_{n}

which lead to the fact that φ(ρn)<φ(ρn1)\varphi\left(\rho_{n}\right)<\varphi\left(\rho_{n-1}\right), which implies φ(ρn)φ(ρn1)\varphi\left(\rho_{n}\right)\leq\varphi\left(\rho_{n-1}\right), for each nn\in\mathbb{N}. It follows that sequence (φ(ρn))n\left(\varphi\left(\rho_{n}\right)\right)_{n\in\mathbb{N}} is decreasing and bounded below by 0 , because φ\varphi takes values in [0,)[0,\infty). So, we get that there exists τ0\tau\geq 0, such that τ=limnφ(ρn)\tau=\lim_{n\rightarrow\infty}\varphi\left(\rho_{n}\right). Furthermore, since φ(ρn)φ(ρn1)\varphi\left(\rho_{n}\right)\leq\varphi\left(\rho_{n-1}\right), for each nn\in\mathbb{N}, we obtain that ρnρn1\rho_{n}\leq\rho_{n-1}. So (ρn)n\left(\rho_{n}\right)_{n\in\mathbb{N}} is a decreasing sequence and is also bounded below by 0 . Hence there exists ρ0\rho^{*}\geq 0, such that ρ=limnρn\rho^{*}=\lim_{n\rightarrow\infty}\rho_{n}. We have that

φ(ρn)φ(ρn1)ψ(ρn1)+εn\varphi\left(\rho_{n}\right)\leq\varphi\left(\rho_{n-1}\right)-\psi\left(\rho_{n-1}\right)+\varepsilon_{n}

which implies that φ(ρn)φ(ρn1)ψ(ρn1)+δn\varphi\left(\rho_{n}\right)\leq\varphi\left(\rho_{n-1}\right)-\psi\left(\rho_{n-1}\right)+\delta_{n}. Taking lim supn\limsup_{n\rightarrow\infty}, one sees that

lim supnφ(ρn)lim supnφ(ρn1)+lim supn[ψ(ρn1)]+lim supnδn\displaystyle\limsup_{n\rightarrow\infty}\varphi\left(\rho_{n}\right)\leq\limsup_{n\rightarrow\infty}\varphi\left(\rho_{n-1}\right)+\limsup_{n\rightarrow\infty}\left[-\psi\left(\rho_{n-1}\right)\right]+\limsup_{n\rightarrow\infty}\delta_{n}
limnφ(ρn)limnφ(ρn1)lim infnψ(ρn1)+limnδn\displaystyle\lim_{n\rightarrow\infty}\varphi\left(\rho_{n}\right)\leq\lim_{n\rightarrow\infty}\varphi\left(\rho_{n-1}\right)-\liminf_{n\rightarrow\infty}\psi\left(\rho_{n-1}\right)+\lim_{n\rightarrow\infty}\delta_{n}
ττlim infnψ(ρn1)\displaystyle\tau\leq\tau-\liminf_{n\rightarrow\infty}\psi\left(\rho_{n-1}\right)
lim infρn1ρψ(ρn1)=0ρ=0, i.e. ρn0 as n.\displaystyle\liminf_{\rho_{n-1}\rightarrow\rho^{*}}\psi\left(\rho_{n-1}\right)=0\Rightarrow\rho^{*}=0,\text{ i.e. }\rho_{n}\rightarrow 0\text{ as }n\rightarrow\infty.

In this way, (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} is asymptotically regular, namely a pseudo-Cauchy sequence.

The next step is to show that the Picard sequence (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} is a Cauchy sequence. Let us suppose the contrary that the sequence (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} is not a Cauchy sequence. Then, there exists ε>0\varepsilon>0, there exists nk,mk>kn_{k},m_{k}>k, such that nk>mk>kn_{k}>m_{k}>k, where nkn_{k} is the lowest element with property that

d(xmk,xnk)ε and d(xmk,xnk1)<εd\left(x_{m_{k}},x_{n_{k}}\right)\geq\varepsilon\text{ and }d\left(x_{m_{k}},x_{n_{k}-1}\right)<\varepsilon

Define ε~>0\tilde{\varepsilon}>0, such that ε~<ψ(ε)\tilde{\varepsilon}<\psi(\varepsilon). Also, from Nadler’s lemma, we know that, for ε~\tilde{\varepsilon} and xmkTxmk1x_{m_{k}}\in Tx_{m_{k}-1}, there exists vTxnk1v\in Tx_{n_{k}-1}, such that

d(xmk,v)H(Txmk1,Txnk1)+ε~d\left(x_{m_{k}},v\right)\leq H\left(Tx_{m_{k}-1},Tx_{n_{k}-1}\right)+\tilde{\varepsilon}

Without loss of generality, we may assume that vxnkv\neq x_{n_{k}}, with both vv and xnkTxnk1x_{n_{k}}\in Tx_{n_{k}-1}. Applying functional φ\varphi, one obtains that

φ(d(xmk,v))<φ(H(Txmk1,Txnk1))+ε~\displaystyle\varphi\left(d\left(x_{m_{k}},v\right)\right)<\varphi\left(H\left(Tx_{m_{k}-1},Tx_{n_{k}-1}\right)\right)+\tilde{\varepsilon}
φ(d(xmk,v))<φ(d(xmk1,xnk1))ψ(d(xmk1,xnk1))+ε~\displaystyle\varphi\left(d\left(x_{m_{k}},v\right)\right)<\varphi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)-\psi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)+\tilde{\varepsilon}

Also, we know that d(xmk,xnk)εd\left(x_{m_{k}},x_{n_{k}}\right)\geq\varepsilon, so φ(d(xmk,xnk))φ(ε)\varphi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)\geq\varphi(\varepsilon).
Now, since we used assumption (H5), we supposed that H(Txmk1,Txnk1)0H\left(Tx_{m_{k}-1},Tx_{n_{k}-1}\right)\neq 0. Assuming the contrary, we obtain that Txmk1=Txnk1Tx_{m_{k}-1}=Tx_{n_{k}-1}, which shows that xmk,xnkx_{m_{k}},x_{n_{k}} are both in Txnk1Tx_{n_{k}-1}. Then, we have that

εd(xmk,xnk)δ(Txnk1)δ(Tnkx0)0\varepsilon\leq d\left(x_{m_{k}},x_{n_{k}}\right)\leq\delta\left(Tx_{n_{k}-1}\right)\leq\delta\left(T^{n_{k}}x_{0}\right)\rightarrow 0

as kk\rightarrow\infty and we get a contradiction. The usage of diameter functional δ\delta is also explained below, in a more detailed manner. Applying the triangle inequality, we have that

d(xmk,xnk)d(xmk,v)+d(v,xnk)\displaystyle d\left(x_{m_{k}},x_{n_{k}}\right)\leq d\left(x_{m_{k}},v\right)+d\left(v,x_{n_{k}}\right)
φ(d(xmk,xnk))<φ(d(xmk,v))+d(v,xnk)\displaystyle\varphi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)<\varphi\left(d\left(x_{m_{k}},v\right)\right)+d\left(v,x_{n_{k}}\right)
φ(ε)<φ(d(xmk1,xnk1))ψ(d(xmk1,xnk1))+εd(v,xnk)+ε~\displaystyle\Rightarrow\varphi(\varepsilon)<\varphi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)-\psi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)+\varepsilon d\left(v,x_{n_{k}}\right)+\tilde{\varepsilon}

Now, we make the following remark : using (H5), we have assumed that d(xmk,v)0d\left(x_{m_{k}},v\right)\neq 0. Assuming the contrary, we let d(xmk,v)=0d\left(x_{m_{k}},v\right)=0. So, xmk=vTxnk1x_{m_{k}}=v\in Tx_{n_{k}-1}. Then xmkx_{m_{k}} and xnkTxnk1x_{n_{k}}\in Tx_{n_{k}-1}. At the same time, it follows that

εd(xmk,xnk)δ(Txnk1)δ(Tnkx0)0\varepsilon\leq d\left(x_{m_{k}},x_{n_{k}}\right)\leq\delta\left(Tx_{n_{k}-1}\right)\leq\delta\left(T^{n_{k}}x_{0}\right)\rightarrow 0

as kk\rightarrow\infty. Hence, we get a contradiction. Since vv and xnkx_{n_{k}} are in Txnk1Tx_{n_{k}-1}, one finds that d(v,xnk)δ(Txnk1)d\left(v,x_{n_{k}}\right)\leq\delta\left(Tx_{n_{k}-1}\right). It follows that

φ(ε)<φ(d(xmk1,xnk1))ψ(d(xmk1,xnk1))+ε~+δ(Txnk1)\varphi(\varepsilon)<\varphi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)-\psi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)+\tilde{\varepsilon}+\delta\left(Tx_{n_{k}-1}\right)

Since we want to use the assumption regarding the diameter functional δ\delta, we make the following remark, that for each n,TxnTn+1x0n\in\mathbb{N},Tx_{n}\subseteq T^{n+1}x_{0}.
For n=0n=0, we have Tx0T1x0=Tx0Tx_{0}\subseteq T^{1}x_{0}=Tx_{0}, which is valid.
For n=1n=1, it follows that Tx1T2x0=(TT)x0=T(Tx0)=T(A)=xATx=xTx0TxTx_{1}\subseteq T^{2}x_{0}=(T\circ T)x_{0}=T\left(Tx_{0}\right)=T(A)=\bigcup_{x\in A}Tx=\bigcup_{x\in Tx_{0}}Tx, where A:=Tx0A:=Tx_{0}. Since x1Tx0x_{1}\in Tx_{0} and Tx1Tx1Tx_{1}\subseteq Tx_{1}, the the affirmation is valid also for n=1n=1. By induction, one can easily show that, for each n,TxnTn+1x0n\in\mathbb{N},Tx_{n}\subseteq T^{n+1}x_{0}. Now, using the above property, it follows that δ(Txn)\delta\left(Tx_{n}\right)\leq
δ(Tn+1x0)0\delta\left(T^{n+1}x_{0}\right)\rightarrow 0 as nn\rightarrow\infty, i.e. limnδ(Txn)=0\lim_{n\rightarrow\infty}\delta\left(Tx_{n}\right)=0. Hence, we obtain that limkδ(Txnk)=0\lim_{k\rightarrow\infty}\delta\left(Tx_{n_{k}}\right)=0, because (xnk)k\left(x_{n_{k}}\right)_{k\in\mathbb{N}} is a subsequence of (xn)n\left(x_{n}\right)_{n\in\mathbb{N}}. As in [2], by an easy argument based on triangle inequality, one can show that limkd(xmk,xnk)=ε\lim_{k\rightarrow\infty}d\left(x_{m_{k}},x_{n_{k}}\right)=\varepsilon. So

limkd(xmk1,xnk1)=ε\lim_{k\rightarrow\infty}d\left(x_{m_{k}-1},x_{n_{k}-1}\right)=\varepsilon

since d(xmk1,xnk1)kd\left(x_{m_{k}-1},x_{n_{k}-1}\right)_{k\in\mathbb{N}} is a subsequence of d(xmk,xnk)kd\left(x_{m_{k}},x_{n_{k}}\right)_{k\in\mathbb{N}}. By hypothesis (H2), i.e. φ\varphi is usc and ψ\psi is lsc, it follows the following chain of inequalities

φ(ε)lim supkφ(d(xmk1,xnk1))+lim supk[ψ(d(xmk1,xnk1))]+ε~+limkδ(Txnk1)\displaystyle\varphi(\varepsilon)\leq\limsup_{k\rightarrow\infty}\varphi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)+\limsup_{k\rightarrow\infty}\left[-\psi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)\right]+\tilde{\varepsilon}+\lim_{k\rightarrow\infty}\delta\left(Tx_{n_{k}-1}\right)
φ(ε)lim supkφ(d(xmk1,xnk1))lim infkψ(d(xmk1,xnk1))+ε~\displaystyle\varphi(\varepsilon)\leq\limsup_{k\rightarrow\infty}\varphi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)-\liminf_{k\rightarrow\infty}\psi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)+\tilde{\varepsilon}
φ(ε)lim supd(xmk1,xnk1)εφ(d(xmk1,xnk1))lim infd(xmk1,xnk1)εψ(d(xmk1,xnk1))+ε~\displaystyle\varphi(\varepsilon)\leq\limsup_{d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\rightarrow\varepsilon}\varphi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)-\liminf_{d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\rightarrow\varepsilon}\psi\left(d\left(x_{m_{k}-1},x_{n_{k}-1}\right)\right)+\tilde{\varepsilon}
φ(ε)φ(ε)ψ(ε)+ε~ψ(ε)ε~\displaystyle\varphi(\varepsilon)\leq\varphi(\varepsilon)-\psi(\varepsilon)+\tilde{\varepsilon}\Rightarrow\psi(\varepsilon)\leq\tilde{\varepsilon}

Since ε~<ψ(ε)\tilde{\varepsilon}<\psi(\varepsilon), we obtain a contradiction. S(xn)n\mathrm{S}\left(x_{n}\right)_{n\in\mathbb{N}} is Cauchy. Because ( X,dX,d ) is complete, one sees that there exists xXx^{*}\in X, such that limnxn=x\lim_{n\rightarrow\infty}x_{n}=x^{*}.

The next step is to show that xFTx^{*}\in F_{T}. Using triangle inequality and the fact that the gap functional is nonexpansive (see [14]), one sees that

D(x,Tx)d(x,xn)+D(xn,Tx)d(x,xn)+H(Txn1,Tx)\displaystyle D\left(x^{*},Tx^{*}\right)\leq d\left(x^{*},x_{n}\right)+D\left(x_{n},Tx^{*}\right)\leq d\left(x^{*},x_{n}\right)+H\left(Tx_{n-1},Tx^{*}\right)\Rightarrow
φ(D(x,Tx))<d(x,xn)+φ(H(Txn1,Tx))\displaystyle\varphi\left(D\left(x^{*},Tx^{*}\right)\right)<d\left(x^{*},x_{n}\right)+\varphi\left(H\left(Tx_{n-1},Tx^{*}\right)\right)
φ(D(x,Tx))<d(x,xn)+φ(d(xn1,x))ψ(d(xn1,x))\displaystyle\varphi\left(D\left(x^{*},Tx^{*}\right)\right)<d\left(x^{*},x_{n}\right)+\varphi\left(d\left(x_{n-1},x^{*}\right)\right)-\psi\left(d\left(x_{n-1},x^{*}\right)\right)
φ(D(x,Tx))limnd(x,xn)+lim supd(xn1,x)0φ(d(xn1,x))lim infd(xn1,x)0ψ(d(xn1,x))\displaystyle\varphi\left(D\left(x^{*},Tx^{*}\right)\right)\leq\lim_{n\rightarrow\infty}d\left(x^{*},x_{n}\right)+\limsup_{d\left(x_{n-1},x^{*}\right)\rightarrow 0}\varphi\left(d\left(x_{n-1},x^{*}\right)\right)-\liminf_{d\left(x_{n-1},x^{*}\right)\rightarrow 0}\psi\left(d\left(x_{n-1},x^{*}\right)\right)

where we have taken lim supn\limsup_{n\rightarrow\infty}. It follows that

φ(D(x,Tx))φ(0)ψ(0)=0\varphi\left(D\left(x^{*},Tx^{*}\right)\right)\leq\varphi(0)-\psi(0)=0

So φ(D(x,Tx))=0\varphi\left(D\left(x^{*},Tx^{*}\right)\right)=0, which implies that D(x,Tx)=0D\left(x^{*},Tx^{*}\right)=0. Because TT has closed values, it follows that xFTx^{*}\in F_{T}.

Finally, we make the observation that in the chain of inequalities from above we have used the fact that H(Txn1,Tx)0H\left(Tx_{n-1},Tx^{*}\right)\neq 0. If nn\in\mathbb{N} for which H(Txn1,Tx)=0H\left(Tx_{n-1},Tx^{*}\right)=0, then we can use just the simple inequality D(x,Tx)d(x,xn)D\left(x^{*},Tx^{*}\right)\leq d\left(x^{*},x_{n}\right), because D(xn,Tx)H(Txn1,Tx)=0D\left(x_{n},Tx^{*}\right)\leq H\left(Tx_{n-1},Tx^{*}\right)=0 and the proof remains the same.
(ii) Now, for the second part of the proof, let’s suppose that (SF)T(SF)_{T}\neq\emptyset. So, there exists y(SF)Ty^{*}\in(SF)_{T}. Furthermore, let’s suppose that there exists y(SF)Ty\in(SF)_{T}, such that yyy\neq y^{*}. Then, it follows that

d(y,y)=H(Ty,Ty)\displaystyle d\left(y,y^{*}\right)=H\left(Ty,Ty^{*}\right)\Rightarrow
φ(d(y,y))=φ(H(Ty,Ty))\displaystyle\varphi\left(d\left(y,y^{*}\right)\right)=\varphi\left(H\left(Ty,Ty^{*}\right)\right)\Rightarrow
φ(y,y)φ(d(y,y))ψ(d(y,y)), so ψ(d(y,y))0\displaystyle\varphi\left(y,y^{*}\right)\leq\varphi\left(d\left(y,y^{*}\right)\right)-\psi\left(d\left(y,y^{*}\right)\right),\text{ so }\psi\left(d\left(y,y^{*}\right)\right)\leq 0

It follows that d(y,y)=0d\left(y,y^{*}\right)=0. So, we obtained a contradiction, i.e. (SF)T={y}(SF)_{T}=\left\{y^{*}\right\}. Also, we know that (SF)TFT(SF)_{T}\subseteq F_{T}. At this time we can show that FT(SF)TF_{T}\subseteq(SF)_{T}, i.e. FT={y}F_{T}=\left\{y^{*}\right\}. Let xFTx^{*}\in F_{T}. Suppose the contrary, i.e. xyx^{*}\neq y^{*}. Then d(x,y)>0d\left(x^{*},y^{*}\right)>0, so ψ(d(x,y))>0\psi\left(d\left(x^{*},y^{*}\right)\right)>0. We have that

d(x,y)=D(x,Tx)H(Tx,Ty)d\left(x^{*},y^{*}\right)=D\left(x^{*},Tx^{*}\right)\leq H\left(Tx^{*},Ty^{*}\right)

So

φ(d(x,y))φ(H(Tx,Ty))φ(d(x,y))ψ(d(x,y))\varphi\left(d\left(x^{*},y^{*}\right)\right)\leq\varphi\left(H\left(Tx^{*},Ty^{*}\right)\right)\leq\varphi\left(d\left(x^{*},y^{*}\right)\right)-\psi\left(d\left(x^{*},y^{*}\right)\right)

Hence, ψ(d(x,y))0\psi\left(d\left(x^{*},y^{*}\right)\right)\leq 0, which is false. Then, the conclusion holds properly.
Remark 2.1. In [5], the authors have used the fact that φ:[0,)[0,)\varphi:[0,\infty)\rightarrow[0,\infty) is nondecreasing, so it implies that the functional φ\varphi is strictly inverse isotone on [0,)[0,\infty), i.e.

φ(t1)<φ(t2)t1<t2, where t1,t2[0,)\varphi\left(t_{1}\right)<\varphi\left(t_{2}\right)\Rightarrow t_{1}<t_{2},\text{ where }t_{1},t_{2}\in[0,\infty)

In our case, the function is (strictly) increasing. This means that φ\varphi is indeed strictly increasing, so t1<t2φ(t1)<φ(t2)t_{1}<t_{2}\Rightarrow\varphi\left(t_{1}\right)<\varphi\left(t_{2}\right). By logical transposition, it follows that

φ(t2)φ(t1)t2t1\varphi\left(t_{2}\right)\leq\varphi\left(t_{1}\right)\Rightarrow t_{2}\leq t_{1}

Furthermore, we have used in the previous proof that for φ(t1)<φ(t2)t1t2\varphi\left(t_{1}\right)<\varphi\left(t_{2}\right)\Rightarrow t_{1}\leq t_{2}. This is equivalent to the following fact : if t1>t2φ(t1)φ(t2)t_{1}>t_{2}\Rightarrow\varphi\left(t_{1}\right)\geq\varphi\left(t_{2}\right). By the fact that φ\varphi is strictly increasing, we get that the last inequality is a particular case, i.e. a strict inequality. Also, some parts from the above proof, we have used that φ\varphi is only increasing. Now, since φ\varphi is strictly increasing, then this functional is one-to-one, so φ(t1)=φ(t2)t1=t2\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)\Rightarrow t_{1}=t_{2}. Combining this with the fact that φ\varphi is strictly increasing, we have simplified the proof by taking φ(t1)φ(t2)t1t2\varphi\left(t_{1}\right)\leq\varphi\left(t_{2}\right)\Rightarrow t_{1}\leq t_{2}. Also, since φ\varphi is strictly increasing we get that t1<t2φ(t1)<φ(t2)t_{1}<t_{2}\Rightarrow\varphi\left(t_{1}\right)<\varphi\left(t_{2}\right). Moreover, for t1=t2t_{1}=t_{2}, it follows that φ(t1)=φ(t2)\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right) from the definition of a regular function. Combining both of these, it follows that for t1t2φ(t1)φ(t2)t_{1}\leq t_{2}\Rightarrow\varphi\left(t_{1}\right)\leq\varphi\left(t_{2}\right).

Remark 2.2. Instead of using hypothesis (H5), similar theorems can be constructed using the assumption that φ\varphi is subadditive, i.e. φ(t1+t2)φ(t1)+φ(t2)\varphi\left(t_{1}+t_{2}\right)\leq\varphi\left(t_{1}\right)+\varphi\left(t_{2}\right), for each t1,t20t_{1},t_{2}\geq 0. We can manage this assumption through the following hypothesis.
(a) If we put the additional assumption such that φ\varphi is onto and using the fact that

ρnH(Txn1,Txn)+ε,\rho_{n}\leq H\left(Tx_{n-1},Tx_{n}\right)+\varepsilon^{\prime},

we get the following: denote by Mn:=min{tn,δn}M_{n}:=\min\left\{t_{n},\delta_{n}\right\}. Then, for Mn2\frac{M_{n}}{2}, there exists εn\varepsilon_{n}^{\prime}, such that

φ(εn)=Mn2Mn\varphi\left(\varepsilon_{n}^{\prime}\right)=\frac{M_{n}}{2}\leq M_{n}

Also, since if φ\varphi is strictly increasing then it is one-to-one. We can get rid of this restrictive assumption, by remaking the proof just in the case when φ\varphi is only increasing.
(b) Another method when φ\varphi is only increasing and subadditive is similar to the proof of [9]. For example, using the assumptions available in [9], we can construct the sequence (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} as follows: for x1Tx0x_{1}\in Tx_{0}, there exists x2Tx1x_{2}\in Tx_{1}, with

φ(d(x1,x2))q1φ(D(x1,Tx1))\varphi\left(d\left(x_{1},x_{2}\right)\right)\leq q_{1}\varphi\left(D\left(x_{1},Tx_{1}\right)\right)

Also, we can take

q1:=ε1+D(x1,Tx1)D(x1,Tx1)q_{1}:=\frac{\varepsilon_{1}+D\left(x_{1},Tx_{1}\right)}{D\left(x_{1},Tx_{1}\right)}

when ε1min{δ1,t1}\varepsilon_{1}\leq\min\left\{\delta_{1},t_{1}\right\}, and so on.

Remark 2.3. An important observation is that in assumption (H5) of the previous theorem we have that φ(a+b)φ(a)+b\varphi(a+b)\leq\varphi(a)+b, for each b0b\geq 0 and a>0a>0. If the assumption was defined for each a0a\geq 0, taking a=0a=0, it follows that φ(a)a\varphi(a)\leq a. So, we get the property of comparison functions. In this case, if (H5) seems restrictive, one can use the previous remark.

In what follows, we will present the second main result of this article. The next theorem gives a fixed point result concerning ( φψ\varphi-\psi ) multivalued operators. In fact, the next theorem is an improvement of the previous one, where an assumption involving the diameter functional δ\delta is imposed. Using the technique introduced in [18], we can relax some hypothesis of this theorem. Finally, we show that, in addition to the above mentioned conclusions, we can obtain the uniqueness of the fixed point for the multi-valued operator.

Before the second main result of this paper, we present an important remark that shall be used further. The technique is based on the approach given in [18].

Remark 2.4. Let φ\varphi be a functional endowed with properties (H1), (H3), (H4) and (H5) from the previous theorem. Also, consider a sequence (dn)n\left(d_{n}\right)_{n\in\mathbb{N}}, such that dndd_{n}\geq d and with limndn=d\lim_{n\rightarrow\infty}d_{n}=d. Then, dnd0d_{n}-d\geq 0. It follows that

φ(dn)=φ(d+dnd)φ(d)+[dnd]\varphi\left(d_{n}\right)=\varphi\left(d+d_{n}-d\right)\leq\varphi(d)+\left[d_{n}-d\right]

which is valid since d>0d>0 and dnd0d_{n}-d\geq 0. It follows that

φ(dn)φ(d)+(dnd)\varphi\left(d_{n}\right)\leq\varphi(d)+\left(d_{n}-d\right)

Taking the upper limit, we have that lim supnφ(dn)φ(d)\limsup_{n\rightarrow\infty}\varphi\left(d_{n}\right)\leq\varphi(d). We remark that if φ\varphi was usc, then lim supnφ(dn)φ(d)\limsup_{n\rightarrow\infty}\varphi\left(d_{n}\right)\leq\varphi(d). So, because of the assumptions on φ\varphi, it follows that the above property is more relaxed, in the sense that the functional φ\varphi must satisfy the usc condition only for the case when dndd_{n}\geq d.

Now, we are in a position to give the second fixed point theorem.

Theorem 2.2. Let ( X,dX,d ) be a complete metric space and T:XPb,cl(X)T:X\rightarrow P_{b,cl}(X) be a multivalued operator satisfying the following assumption

φ(H(Tx,Ty))φ(d(x,y))ψ(d(x,y)), for each x,yX,\varphi(H(Tx,Ty))\leq\varphi(d(x,y))-\psi(d(x,y)),\text{ for each }x,y\in X,

where the mappings φ\varphi and ψ\psi satisfy

(H1)φ,ψ:[0,)[0,),\displaystyle(H1)\varphi,\psi:[0,\infty)\rightarrow[0,\infty),
(H2)φ is usc in 0 and ψ is lsc in 0,\displaystyle(H2)\varphi\text{ is usc in }0\text{ and }\psi\text{ is lsc in }0,
(H3)φ(0)=ψ(0)=0 and φ(t),ψ(t)>0, for each t>0,\displaystyle(H3)\varphi(0)=\psi(0)=0\text{ and }\varphi(t),\psi(t)>0,\text{ for each }t>0,
(H4)φ is (strictly) increasing,\displaystyle(H4)\varphi\text{ is (strictly) increasing, }
(H5)φ(a+b)φ(a)+b, for each a>0 and b0.\displaystyle(H5)\varphi(a+b)\leq\varphi(a)+b,\text{ for each }a>0\text{ and }b\geq 0.

We also suppose that δ(Tnx)0\delta\left(T^{n}x\right)\rightarrow 0 as nn\rightarrow\infty, for each xXx\in X. Then, multivalued operator TT has a unique fixed point.

Proof. (i) Let x0Xx_{0}\in X and x1Tx0x_{1}\in Tx_{0} be arbitrary taken. Also, consider the sequence (δn)n\left(\delta_{n}\right)_{n\in\mathbb{N}}, such that δn>0\delta_{n}>0, satisfying limnδn=0\lim_{n\rightarrow\infty}\delta_{n}=0. As in the proof of the previous theorem, we construct inductively the sequence (xn)n\left(x_{n}\right)_{n\in\mathbb{N}}, as follows. For εn>0\varepsilon_{n}>0 and xnTxn1x_{n}\in Tx_{n-1}, there exists xn+1Txnx_{n+1}\in Tx_{n}, such that

d(xn,xn+1)<εn+D(xn,Txn)d\left(x_{n},x_{n+1}\right)<\varepsilon_{n}+D\left(x_{n},Tx_{n}\right)

where εmin{δn,tn}\varepsilon\leq\min\left\{\delta_{n},t_{n}\right\}, with tnt_{n} defined as in the previous theorem, for each nn\in\mathbb{N}. Also, denoting d(xn,xn+1)d\left(x_{n},x_{n+1}\right) by ρn\rho_{n}, it follows that

ρn<εn+D(xn,Txn)\displaystyle\rho_{n}<\varepsilon_{n}+D\left(x_{n},Tx_{n}\right)
ρn<δn+D(xn,Txn), for each n\displaystyle\rho_{n}<\delta_{n}+D\left(x_{n},Tx_{n}\right),\text{ for each }n\in\mathbb{N}\Rightarrow
ρnδn+d(xn,xn+1).\displaystyle\rho_{n}\leq\delta_{n}+d\left(x_{n},x_{n+1}\right).

Now,

ρn<ε+D(xn,Txn)εn+H(Txn1,Txn)\rho_{n}<\varepsilon+D\left(x_{n},Tx_{n}\right)\leq\varepsilon_{n}+H\left(Tx_{n-1},Tx_{n}\right)

So, as in the proof of the previous theorem, there exists ρ=limnρn\rho^{*}=\lim_{n\rightarrow\infty}\rho_{n}, with ρ0\rho^{*}\geq 0. At the same time, there exists τ=limnφ(ρn)\tau=\lim_{n\rightarrow\infty}\varphi\left(\rho_{n}\right), where τ0\tau\geq 0. It follows that

limnρnlimnδn+limnD(xn,Txn)limnδn+limnρn\lim_{n\rightarrow\infty}\rho_{n}\leq\lim_{n\rightarrow\infty}\delta_{n}+\lim_{n\rightarrow\infty}D\left(x_{n},Tx_{n}\right)\leq\lim_{n\rightarrow\infty}\delta_{n}+\lim_{n\rightarrow\infty}\rho_{n}

So, we have that

ρlimnD(xn,Txn)ρ\rho^{*}\leq\lim_{n\rightarrow\infty}D\left(x_{n},Tx_{n}\right)\leq\rho^{*}

This means that limnDn=ρ\lim_{n\rightarrow\infty}D_{n}=\rho^{*}, where Dn:=D(xn,Txn)D_{n}:=D\left(x_{n},Tx_{n}\right), for each nn\in\mathbb{N}.
The next step of this proof is to show that ρ=0\rho^{*}=0. Moreover, it follows that

Dn+1=D(xn+1,Txn+1)H(Txn1,Txn)\displaystyle D_{n+1}=D\left(x_{n+1},Tx_{n+1}\right)\leq H\left(Tx_{n-1},Tx_{n}\right)
φ(Dn+1)φ(H(Txn,Txn+1))\displaystyle\varphi\left(D_{n+1}\right)\leq\varphi\left(H\left(Tx_{n},Tx_{n+1}\right)\right)
φ(Dn+1)φ(ρn)ψ(ρn)φ(ρn).\displaystyle\varphi\left(D_{n+1}\right)\leq\varphi\left(\rho_{n}\right)-\psi\left(\rho_{n}\right)\leq\varphi\left(\rho_{n}\right).

Since ρn<δn+Dnδn+ρn\rho_{n}<\delta_{n}+D_{n}\leq\delta_{n}+\rho_{n}, for each nn\in\mathbb{N} and using the fact that limnδn=0\lim_{n\rightarrow\infty}\delta_{n}=0 and

τ=limnφ(ρn)=lim infnφ(ρn)=lim supnφ(ρn)\tau=\lim_{n\rightarrow\infty}\varphi\left(\rho_{n}\right)=\liminf_{n\rightarrow\infty}\varphi\left(\rho_{n}\right)=\limsup_{n\rightarrow\infty}\varphi\left(\rho_{n}\right)

by taking the upper limit, it follows that

τlim supnφ(Dn)τ\displaystyle\tau\leq\limsup_{n\rightarrow\infty}\varphi\left(D_{n}\right)\leq\tau
lim supnφ(Dn)=lim supDnρφ(Dn)=τ\displaystyle\limsup_{n\rightarrow\infty}\varphi\left(D_{n}\right)=\limsup_{D_{n}\rightarrow\rho^{*}}\varphi\left(D_{n}\right)=\tau

So, we have the following

lim supDnρφ(Dn)lim supnφ(ρn)lim infnψ(ρn)lim supnφ(ρn)=τ\limsup_{D_{n}\rightarrow\rho^{*}}\varphi\left(D_{n}\right)\leq\limsup_{n\rightarrow\infty}\varphi\left(\rho_{n}\right)-\liminf_{n\rightarrow\infty}\psi\left(\rho_{n}\right)\leq\limsup_{n\rightarrow\infty}\varphi\left(\rho_{n}\right)=\tau

So lim supρnρφ(ρn)lim infnψ(ρn)=τ\limsup_{\rho_{n}\rightarrow\rho^{*}}\varphi\left(\rho_{n}\right)-\liminf_{n\rightarrow\infty}\psi\left(\rho_{n}\right)=\tau. This means that lim supρnρφ(ρn)=τ+lim infnψ(ρn)\limsup_{\rho_{n}\rightarrow\rho^{*}}\varphi\left(\rho_{n}\right)=\tau+\liminf_{n\rightarrow\infty}\psi\left(\rho_{n}\right), i.e. limρnρφ(ρn)=τ+lim infnψ(ρn)\lim_{\rho_{n}\rightarrow\rho^{*}}\varphi\left(\rho_{n}\right)=\tau+\liminf_{n\rightarrow\infty}\psi\left(\rho_{n}\right). Finally, we get that τ=τ+lim infnψ(ρn)\tau=\tau+\liminf_{n\rightarrow\infty}\psi\left(\rho_{n}\right), so lim infρnρψ(ρn)=0\liminf_{\rho_{n}\rightarrow\rho^{*}}\psi\left(\rho_{n}\right)=0. Because ψ\psi is lsc in 0 , it follows up that ρ=0\rho^{*}=0.

Now, we show that sequence (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} is Cauchy. Also, as in the previous theorem, there exists ε>0\varepsilon>0 and there exists nk,mk>kn_{k},m_{k}>k, with d(xmk,xnk)εd\left(x_{m_{k}},x_{n_{k}}\right)\geq\varepsilon. As in [18], we get that limnd(xmk,xnk)=ε\lim_{n\rightarrow\infty}d\left(x_{m_{k}},x_{n_{k}}\right)=\varepsilon. At the same time, we shall use [Lemma 2.1] from [18], i.e. for each x,yXx,y\in X, we have that

d(x,y)D(x,Tx)+H(Tx,Ty)+D(y,Ty)+δ(Ty)d(x,y)\leq D(x,Tx)+H(Tx,Ty)+D(y,Ty)+\delta(Ty)

Applying this to subsequences (xmk)k\left(x_{m_{k}}\right)_{k\in\mathbb{N}} and (xnk)k\left(x_{n_{k}}\right)_{k\in\mathbb{N}}, we get that

d(xmk,xnk)D(xnk,Txnk)D(xmk,Txmk)δ(Txmk)H(Txnk,Txmk)\displaystyle d\left(x_{m_{k}},x_{n_{k}}\right)-D\left(x_{n_{k}},Tx_{n_{k}}\right)-D\left(x_{m_{k}},Tx_{m_{k}}\right)-\delta\left(Tx_{m_{k}}\right)\leq H\left(Tx_{n_{k}},Tx_{m_{k}}\right)
d(xmk,xnk)Dnk+Dmk+δ(Txmk)+H(Txmk,Txnk)\displaystyle d\left(x_{m_{k}},x_{n_{k}}\right)\leq D_{n_{k}}+D_{m_{k}}+\delta\left(Tx_{m_{k}}\right)+H\left(Tx_{m_{k}},Tx_{n_{k}}\right)

Applying the functional φ\varphi and using some assumptions on this mapping, we get that

φ(d(xmk,xnk))φ(Dnk+Dmk+H(Txmk,Txnk))+δ(Txmk)\displaystyle\varphi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)\leq\varphi\left(D_{n_{k}}+D_{m_{k}}+H\left(Tx_{m_{k}},Tx_{n_{k}}\right)\right)+\delta\left(Tx_{m_{k}}\right)\leq
φ(H(Txmk,Txnk)+Dnk)+Dmk+δ(Txmk)\displaystyle\varphi\left(H\left(Tx_{m_{k}},Tx_{n_{k}}\right)+D_{n_{k}}\right)+D_{m_{k}}+\delta\left(Tx_{m_{k}}\right)\leq
φ(H(Txmk,Txnk))+Dnk+Dmk+δ(Txmk)\displaystyle\varphi\left(H\left(Tx_{m_{k}},Tx_{n_{k}}\right)\right)+D_{n_{k}}+D_{m_{k}}+\delta\left(Tx_{m_{k}}\right)

This chain of inequalities is valid if we suppose that for each n,Dn0n\in\mathbb{N},D_{n}\neq 0. By the contrary, if there exists nn\in\mathbb{N}, such that Dn=0D_{n}=0, then xnFTx_{n}\in F_{T}. So, without restraining the generality, we can suppose that Dn0D_{n}\neq 0, so all the sums used inside φ\varphi are nonzero. Furthermore, by this process we get at least a fixed point for the operator TT. Proceeding as is shown below with using the diameter functional δ\delta, we still get a unique fixed contractive fixed point. Also, in the last inequality we can suppose that H(Txmk,Txnk)0H\left(Tx_{m_{k}},Tx_{n_{k}}\right)\neq 0. Assuming the contrary, it follows that Txmk=TxnkTx_{m_{k}}=Tx_{n_{k}}, so xmk+1,xnk+1x_{m_{k}+1},x_{n_{k}+1} are both in TxnkTx_{n_{k}}. Reasoning as in the proof of the first theorem, and using the fact that d(xmk+1,xnk+1)εd\left(x_{m_{k}+1},x_{n_{k}+1}\right)\rightarrow\varepsilon, because (d(xmk+1,xnk+1))\left(d\left(x_{m_{k}+1},x_{n_{k}+1}\right)\right) is a subsequence of (d(xmk,xnk))\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right), the contradiction follows easily. Furthermore, we have shown that Dnρ=0D_{n}\rightarrow\rho^{*}=0. We have that

φ(ε)φ(d(xmk,xnk))φ(d(xmk,xnk))ψ(d(xmk,xnk))+Dnk+Dmk+δ(Txmk)\displaystyle\varphi(\varepsilon)\leq\varphi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)\leq\varphi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)-\psi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)+D_{n_{k}}+D_{m_{k}}+\delta\left(Tx_{m_{k}}\right)
φ(ε)lim supd(xmk,xnk)εφ(d(xmk,xnk))lim infd(xmk,xnk)εψ(d(xmk,xnk))\displaystyle\varphi(\varepsilon)\leq\limsup_{d\left(x_{m_{k}},x_{n_{k}}\right)\rightarrow\varepsilon}\varphi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)-\liminf_{d\left(x_{m_{k}},x_{n_{k}}\right)\rightarrow\varepsilon}\psi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)

Now, since d(xmk,xnk)εd\left(x_{m_{k}},x_{n_{k}}\right)\rightarrow\varepsilon and d(xmk,xnk)εd\left(x_{m_{k}},x_{n_{k}}\right)\geq\varepsilon, using the previous remark, it follows that

φ(ε)φ(ε)lim infkψ(d(xmk,xnk))\displaystyle\varphi(\varepsilon)\leq\varphi(\varepsilon)-\liminf_{k\rightarrow\infty}\psi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)
lim infkψ(d(xmk,xnk))=0\displaystyle\liminf_{k\rightarrow\infty}\psi\left(d\left(x_{m_{k}},x_{n_{k}}\right)\right)=0

So, (xn)n\left(x_{n}\right)_{n\in\mathbb{N}} is a Cauchy sequence.
Now, for the existence of the fixed point, one can reason as in the previous proof. So, we denote by xx^{*} the fixed point of the multivalued operator TT.
(ii) Now, we can show that FTF_{T} is a singleton, even when (SF)T(SF)_{T}\neq\emptyset is not satisfied. We reason as in [18]. So, let x,yFTx^{*},y^{*}\in F_{T}. We consider the following sequence :
y1Tx,y2Ty1,,ynTyn1y_{1}\in Tx^{*},y_{2}\in Ty_{1},\ldots,y_{n}\in Ty_{n-1}, with d(yn,y)H(Tyn1,Tx)+δnd\left(y_{n},y^{*}\right)\leq H\left(Ty_{n-1},Tx^{*}\right)+\delta_{n}, with δn0\delta_{n}\rightarrow 0 as nn\rightarrow\infty. This can be done by a successive application of Nadler’s lemma.
Furthermore, one can show that ynTyn1.Tn1y1Tnxy_{n}\in Ty_{n-1}\subseteq\ldots.\subseteq T^{n-1}y_{1}\subseteq T^{n}x^{*}. We estimate

d(x,y)d(x,yn)+d(yn,y)δ(Tnx)+H(Tyn1,Tx)+δn. Thus\displaystyle d\left(x^{*},y^{*}\right)\leq d\left(x^{*},y_{n}\right)+d\left(y_{n},y^{*}\right)\leq\delta\left(T^{n}x^{*}\right)+H\left(Ty_{n-1},Tx^{*}\right)+\delta_{n}.\text{ Thus }
φ(d(x,y))δn+φ(δ(Tnx)+H(Tyn1,Tx))\displaystyle\varphi\left(d\left(x^{*},y^{*}\right)\right)\leq\delta_{n}+\varphi\left(\delta\left(T^{n}x^{*}\right)+H\left(Ty_{n-1},Tx^{*}\right)\right)\leq
δn+δ(Tnx)+φ(H(Tyn1,Tx))\displaystyle\delta_{n}+\delta\left(T^{n}x^{*}\right)+\varphi\left(H\left(Ty_{n-1},Tx^{*}\right)\right)\leq
δn+δ(Tnx)+φ(d(yn1,x))ψ(d(yn1,x))\displaystyle\delta_{n}+\delta\left(T^{n}x^{*}\right)+\varphi\left(d\left(y_{n-1},x^{*}\right)\right)-\psi\left(d\left(y_{n-1},x^{*}\right)\right)\leq
δn+δ(Tnx)+φ(δ(Tnx))\displaystyle\delta_{n}+\delta\left(T^{n}x^{*}\right)+\varphi\left(\delta\left(T^{n}x^{*}\right)\right)

In the above argument, we have used hypothesis (H5) with H(Tyn1,Tx)0H\left(Ty_{n-1},Tx^{*}\right)\neq 0. If this was not true, we can proceed as in the proof of the previous theorem.

Now, we can use the fact that lim supδ(Tnx)0φ(δ(Tnx))=0\limsup_{\delta\left(T^{n}x^{*}\right)\rightarrow 0}\varphi\left(\delta\left(T^{n}x^{*}\right)\right)=0. Taking the upper limit, it follows that φ(d(x,y))=0\varphi\left(d\left(x^{*},y^{*}\right)\right)=0, so d(x,y)=0d\left(x^{*},y^{*}\right)=0, i.e., FTF_{T} is a singleton.

Conclusions

In this article, in connection to some theorems given in [16] and [18], we present two results concerning the fixed points of ( φψ\varphi-\psi ) multi-valued operators. The additional assumption imposed here involves a certain behavior of the diameter of the multi-valued iterates. The second theorem is an existence and uniqueness result for the fixed point of a ( φψ\varphi-\psi ) multi-valued operator. Finally, in the same context, an open problem is presented.

References

[1] Y. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory and Its Applications: The Israel M. Glazman memorial volume, Oper. Theory, Adv. Appl. (I. Gohberg- Ed.), Birkhäuser, Basel, 1997, 7?2.
[2] A. Amini-Harandi, A. Petruşel, A fixed point theorem by altering distance technique in complete metric spaces, Miskolc Math. Notes, 14 (2013), 11-17.
[3] S. Dhompongsa, H. Yingtaweesittikul, Diametrically contractive multivalued mappings, Fixed Point Theory Appl. 2007 (2007), Article ID 19745.
[4] P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 406368.
[5] T. Kamran, Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, Math. Comput. Model. 54 (2011), 2772-2777.
[6] M. S. Khan, M. Swaleh, S. Sessa, ixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9.
[7] V. L. Lazăr, Fixed point theory for multivalued φ\varphi-contractions, Fixed Point Theory Appl. 2011 (2011), Article ID 50.
[8] T. Lazăr, G. Moţ, G. Petruşel, S. Szentesi, The theory of Reich’s fixed point theorem for multivalued operators, Fixed Point Theory Appl. 2010 (2010), Article ID 178421.
[9] Z. Liu, Z. Wu, S.M. Kang, S. Lee, Some fixed point theorems for nonlinear set-valued contractive mappings, J. Appl. Math. 2012 (2012) Article ID 786061.
[10] S. Moradi, A. Farajzadeh, On the fixed point of ( ψφ\psi-\varphi )-weak and generalized ( ψφ\psi-\varphi )-weak contraction mappings, Appl. Math. Lett. 25 (2012), 1257?262.
[11] S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[12] T.P. Petru, M. Boriceanu, Fixed point results for generalized φ\varphi-contraction on a set with two metrics, Top. Method Nonlin. Anal. 33 (2009), 315-326
[13] A. Petruşel, Multivalued weakly Picard operators and applications, Sci. Math. Japon. 59 (2004), 169-202.
[14] A. Petruşel, peratorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.
[15] A. Petruşel, I.A. Rus, Multivalued Picard and weakly Picard operators, Fixed Point Theory Appl. (J. Garcia Falset, E. Llorens Fuster, B. Sims - Eds.), Yokohama Publ., 2004, 207-226.
[16] G. Petrusel, T. Lazar, V.L. Lazar, Fixed points and coupled fixed points for multi-valued ( ψφ\psi-\varphi )-contractions in b-metric spaces, Applied Anal. Optimization, 1 (2017), 99-112.
[17] O. Popescu, Fixed points for ( ψφ\psi-\varphi )-weak contractions, Appl. Math. Lett. 24 (2011), 1-4.
[18] O. Popescu, G. Stan, A generalization of Nadler’s fixed point theorem, Results Math. (2017), DOI 10.1007/s00025-017-0694-4
[19] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683 ?693.
[20] B. E. Rhoades, H.K. Pathak, S.N. Mishra, Some weakly contractive mappings theorems in partially ordered spaces and applications, Demonstratio Math. 45 (2012), 621-636.
[21] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[22] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
[23] Z. Xue, Fixed points theorems for generalized weakly contractive mappings, Bull. Aust. Math. Soc. 93 (2016), 321?29.

Related Posts