Posts by Costica Mustata

Abstract


Considering a metric space and its Lipschitz dual one defines the notion of M-ideal and HB-subspace of a metric space (with respect to its Lipschitz dual). One obtain some results analogous to these in the theory of M-ideal and HB-subspaces in a normed space. The results in the paper are based on an extension theorem of McShane [2], [3] and on a uniquenese theorem which is similar to one of R.R.Phelps [10], [11].

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

Paper coordinates

C. Mustăţa, M-ideals in metric spaces, ”Babeş-Bolyai” University, Faculty of Math. and Physics, Research Seminars, Seminar on Mathematica Analysis, Preprint Nr.7 (1988), 67-74 (MR # 90b: 54019)

PDF

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

MR # 90b: 54019

google scholar link

[1] Alfsen, D.M., Effross, E., Structure in real Banach spaces, Ann. of Math. 96(1972), 98-173.
[2] Czisper, J.,Geher, L., Extension of Funcitons satisfying a Lipschitz conditions, Acta Math. Acad.Sci. Hungar 6(1955), 213-220.
[3] Fakhoury, E., Selections lineaires associees au Theoreme de  Hahn-Banach, J. of Funcitonal analysis 11 (1972), 436-452.
[4] Hennefeld, J., M – ideas, HB – subspaces and Compact Operators, Indiana Univ. Math. J. 28 (6) (1979), 927-934.
[5] Hennefeld, J., A note on M – ideals in B(X), Mat. Soc. 98 (1) (1980), 89-92.
[6] Holmes, R.B., Scrantor, B., Ward, J.D., Approximation from the space of compact operators and other M – ideals Duke Math. J. 42 (1975), 259-269.
[7] Holmes, R.B., Geometric Functional Analysis and its Applications, Springer – Verlag – New York – Heidelberg – Berlin, 1975.
[8] Shane, E.J., Extension of range of funcitons, Bull. Amer. Math. Soc. 40 (1934), 837-842.
[9] Johnson, J.A., Banach Spaces of Lipschitz Functions and vector – valued Lipschitz Functions, Trans. Amer. Math. Soc. 148(1970), 147-169.
[10] Mustata, C., Best Approximation and Uniwuq Extension of Lipschitz Functions, J. Approx. Theory 19 (3) (1977), 222-230.
[11] Phelps, R.R., Uniqueness of Hahn-Banach Extension and Unique Best Approximation, Trans. Amer. Math. Sec. 25 (1960), 238-255.
[12] Oja, E., On the uniquess of the norm preserving extension of linear functional in this Hahn-Banach Theorem, Proc. Acad. Science Esteonian SSR 33 (4) (1984), 422-433 (Russian).

Paper (preprint) in HTML form

1988-Mustata-Seminar-UBB-Idelas-in-metric-spaces
 "BABES-BOLYAI" UNIVERSITY  Faculty of Mathematics and Physics  Resoarch Seminars  Seminar on Mathematical Analyeis  Preprint Nr.7, 2988, pp. 65-74. 

M - IDEALS IN MRTRIC SPACES

Costică Mustăta

Abstrect. Considering a netric space and its Lipschitz dual one defines the notion of M-ideal and HB-subspace of a metric space (with respect to its Lipschitz dual). One obtain some results analogous to those in the theory of M M MMM-ideals and B B B B ¯ bar(BB)\overline{B B}BB-subspaces in a normed space. The rocults in the paper are based on an extension theorem of KCShane [ 2 ] , [ 8 ] [ 2 ] , [ 8 ] [2],[8][2],[8][2],[8] and on a uniqueness theorem which is similar to one of R.R. Paelps [10], [22].
Introduction. The notion of M-ideal, introduced by E.M. Alfsen and 2. Erross [1], has many applications in functional analysis as, for example, to the problem of best approximation of continuous linear operators by compact operators (see [6]). Following E.M. Alfsen and I. Effross [1], an U-ideal in a normed space X X XXX is a closed sibspace Y Y YYY of X X XXX whose annihilator Y Y Y^(_|_)Y^{\perp}Y admits a complement G G GGG in X X X^(**)X^{*}X such that g + h = g + h , g G , h I g + h = g + h , g G , h I ||g+h||=||g||+||h||,g in G,h inI^(_|_)\|g+h\|=\|g\|+\|h\|, g \in G, h \in I^{\perp}g+h=g+h,gG,hI. S. Henneleld [4], [5] defined a more general notion t A t A t quad At \quad AtA closed subspace Y Y YYY of a normed space X X XXX is called an H B H B HBH BHB-subspace if Y Y Y^(_|_)Y^{\perp}Y has a complement G G GGG 1n Z Z Z^(**)Z^{*}Z such that for every f X , f h , f > g f X , f h , f > g f inX^(**),||f|| >= ||h||,||f|| > ||g||f \in X^{*},\|f\| \geqslant\|h\|,\|f\|>\|g\|fX,fh,f>g, whenever f = g + h f = g + h f=g+hf= g+hf=g+h, with g G , h Y , h 0 g G , h Y , h 0 g in G,h inY^(_|_),h!=0g \in G, h \in Y^{\perp}, h \neq 0gG,hY,h0. It is immediate that overy μ i d e μ i d e mu-ide-\mu-i d e-μide al is an H B H B HB\mathbb{H B}HB-subspace and the converse is not true : The space K ( i 1 , i ) K i 1 , i K(i_(1),i)\mathbb{K}\left(i_{1}, i\right)K(i1,i) of compact Iinear operators from l 1 l 1 l_(1)l_{1}l1 to l 1 l 1 l_(1)l_{1}l1 is an HB-subspace of A ( l , n ) A ( l , n ) A(l,n)A(l, n)A(l,n), the space of all continuous linear operators from 1 1 ℓ_(1)\ell_{1}1 to 1 1 ℓ_(1)\ell_{1}1, which 1 s not an H-ideal ( see [4], [5]).
The aim of this paper is to transpose these notions to a guneral
metric space X X XXX (without any linear structure) by appealing to the Iipschitz dual of X X XXX, 1.e. a Banach space of Lipschitz functions on X X XXX. The notions of M-ideal and HB-subspace cannot be eztonded automatically to a metric linear space by using its linear dual, for two reasons f first, this dual may be trivial, as is the case for the space I p [ 0 , 1 ] , 0 < p < 1 I p [ 0 , 1 ] , 0 < p < 1 I^(p)[0,1],0 < p < 1I^{p}[0,1], 0<p<1Ip[0,1],0<p<1, and second, there is no norm on the dual of a motric linear space.
Results. Let ( X , d X , d X,dX, dX,d ) be a metric space, x 0 x 0 x_(0)x_{0}x0 a fixed point in X X XXX and let X X XXX be a subset of X X XXX such that x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y. If X X XXX is a metric linear space we take always x 0 = 0 x 0 = 0 x_(0)=0x_{0}=0x0=0. A function f : Y R f : Y R f:Y rarr Rf: Y \rightarrow Rf:YR is called a lipschitz function on Y Y YYY if there exists K 0 K 0 K >= 0K \geqslant 0K0 such that
(1) | f ( x ) f ( y ) | K d ( x , y ) | f ( x ) f ( y ) | K d ( x , y ) quad|f(x)-f(y)| <= Kd(x,y)\quad|f(x)-f(y)| \leqslant K d(x, y)|f(x)f(y)|Kd(x,y)
for all x , y X x , y X x,y in Xx, y \in Xx,yX :
Denote by Lip 0 0 _(0){ }_{0}0 the following set
(2) Lip 0 I = { f & I R , f Lip 0 I = f & I R , f Lip_(0)I={f&IrarrR,f:}\operatorname{Lip}_{0} \mathrm{I}=\left\{\mathrm{f} \& \mathrm{I} \rightarrow \mathbf{R}, \mathrm{f}\right.Lip0I={f&IR,f is a Iipschitz function on I , f ( x 0 ) = 0 } I , f x 0 = 0 {:I,f(x_(0))=0}\left.\mathrm{I}, \mathrm{f}\left(\mathrm{x}_{0}\right)=0\right\}I,f(x0)=0}.
Equiped with the usual operations of addition and multiplication by scalars, Lifo Y Y YYY is a linear space and the application I I ||||_(I^(')):}\left\|\|_{I^{\prime}}\right.I ! Lip o X X _("o ")X rarr_{\text {o }} X \rightarrowX R , defined by coscri beanon & II
(3) f Z = sup { | f ( x ) f ( y ) | / d ( x , y ) , x , y I , x y } f Z = sup { | f ( x ) f ( y ) | / d ( x , y ) , x , y I , x y } ||f||_(Z)=s u p{|f(x)-f(y)|//d(x,y)quad,quad x,y in I,x!=y}\|f\|_{Z}=\sup \{|f(x)-f(y)| / d(x, y) \quad, \quad x, y \in I, x \neq y\}fZ=sup{|f(x)f(y)|/d(x,y),x,yI,xy},
is a nord on Lip 0 I 0 I _(0)I{ }_{0} I0I. It is easily seen that f Y f Y ||f||_(Y)\|f\|_{Y}fY is the shallest of the numbers x 0 x 0 x >= 0x \geqslant 0x0 for which the inequality (1) holds. The space ( L i p 0 γ , 1 Y L i p 0 γ , 1 Y Lip_(0)^(gamma),||_(1)||_(Y)L i p_{0}{ }^{\gamma},\left\|_{1}\right\|_{\mathbf{Y}}Lip0γ,1Y ) is a Banach space (even a dual Banach space , see [9]) and we call it the Lipschitz dual of Y Y YYY.
For X X X X X-=XX \equiv XXX the space L i p 0 X L i p 0 X Lip_(0)XL i p_{0} XLip0X and the norm X X ||||_(X):}\left\|\|_{X}\right.X are delined similarly.
In the following, one supposes always that the subset Y Y YYY of X X XXX contains x 0 x 0 x_(0)x_{0}x0 o the fixed element of x x xxx.
The following Hahn-Banach type extension theorem for Lipachitz functions was proved by Uc Shane [8]. (see also [2] ) :
TREOREM 1. Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a metric space, x 0 x 0 x_(0)x_{0}x0 a fixed point in X X XXX and let Y Y YYY be a subset of X X XXX such that x 0 I x 0 I x_(0)in Ix_{0} \in Ix0I. Then every function f L p 0 I f L p 0 I f in Lp_(0)If \in L p_{0} IfLp0I has a norm-preserving extension in L d p 0 X , 1.6 L d p 0 X , 1.6 Ldp_(0)X,1.6L d p_{0} X, 1.6Ldp0X,1.6. there exists Z I tg 0 X Z I tg 0 X Z in Itg_(0)XZ \in I \operatorname{tg}_{0} XZItg0X such that F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f and X = P X X = P X ||||_(X)=||P||_(X)\left\|\left\|_{X}=\right\| P\right\|_{X}X=PX.
In fact, He Shane [8], proved this theorem in the case of the space Lip Y Y YYY and Lip X X XXX of all Lipschitz functions on Y Y YYY and X X XXX, respectively, but the above formulation is more appropriate for our needs. We shall call sometimes briefly any function F F FFF, as given in Theorem 1, an extension of f f fff.
In general, the extension of a function f K p 0 Y f K p 0 Y f in Kp_(0)Yf \in K p_{0} YfKp0Y to X X XXX is not unique. The functions
(4) I I ( x ) = inf { f ( y ) + f I d ( x , y ) : y I } I 2 ( x ) = sup { f ( y ) f I d ( x , y ) : y I } (4) I I ( x ) = inf f ( y ) + f I d ( x , y ) : y I I 2 ( x ) = sup f ( y ) f I d ( x , y ) : y I {:[(4)I_(I)(x)=i n f{f(y)+||f||_(I)d(x,y):y in I}],[I_(2)(x)=s u p{f(y)-||f||_(I)d(x,y):y in I}]:}\begin{align*} & I_{I}(x)=\inf \left\{f(y)+\|f\|_{I} d(x, y): y \in I\right\} \tag{4}\\ & I_{2}(x)=\sup \left\{f(y)-\|f\|_{I} d(x, y): y \in I\right\} \end{align*}(4)II(x)=inf{f(y)+fId(x,y):yI}I2(x)=sup{f(y)fId(x,y):yI}
are two extensions of f f fff and they are extremal elements of the conver set R ( f ; Y ) R ( f ; Y ) R(f;Y)\mathbb{R}(f ; Y)R(f;Y) of all extensions of f f fff. Frery extension I I III of f f fff verifies the inequalities :
(5) F 2 ( x ) P ( x ) F 1 ( x ) , x X (5) F 2 ( x ) P ( x ) F 1 ( x ) , x X {:(5)F_(2)(x) <= P(x) <= F_(1)(x)quad","quad x in X:}\begin{equation*} F_{2}(x) \leqslant P(x) \leqslant F_{1}(x) \quad, \quad x \in X \tag{5} \end{equation*}(5)F2(x)P(x)F1(x),xX
Therefore, the function f L i p 0 I f L i p 0 I f in Lip_(0)If \in L i p_{0} IfLip0I has a unique extension in Lip I 0 I 0 I_(0)I_{0}I0 if and only if F 1 = F 2 F 1 = F 2 F_(1)=F_(2)F_{1}=F_{2}F1=F2.
DEFIMITION 1. The subset Y Y YYY of X X XXX is said to have property ( U U UUU ) if every function f L i p 0 I f L i p 0 I f in Lip_(0)If \in L i p_{0} IfLip0I has a unique extension in Lip I 0 I 0 I_(0)I_{0}I0.
Hecessary and surficient conditions in order that a subset Y Y YYY of I have property (U) and relations of this property with the problem of best approximation in Lip 0 0 _(0){ }_{0}0 by slements in x x x^(_|_)^(_|_){x^{\perp}}^{\perp}x are given犃 [10].
For X X X X X sube XX \subseteq XXX donote by X X X^(_|_)X^{\perp}X its annihilator in Lig 0 X Lig 0 X Lig_(0)X\operatorname{Lig}_{0} XLig0X, i.e.
(6) I = { F L p 0 I , I | I = 0 } I = F L p 0 I , I I = 0 quadI^(_|_)={F in Lp_(0)I, quad I|_(I)=0}\quad I^{\perp}=\left\{F \in L p_{0} I,\left.\quad I\right|_{I}=0\right\}I={FLp0I,I|I=0}.
Obviously, X X X^(_|_)X^{\perp}X is a closed subspace of It p 0 X p 0 X p_(0)X\mathrm{p}_{0} Xp0X.
DEFINITION 2. A subset V V VVV of a normed space Z Z ZZZ is called proyminal if for every z Z z Z z in Zz \in ZzZ there exists 0 V 0 V grad_(0)in V\nabla_{0} \in V0V such that
(7) z v 0 = d ( z , V ^ ) z v 0 = d ( z , V ^ ) quad||z-v_(0)||=d(z, hat(V))\quad\left\|z-v_{0}\right\|=d(z, \hat{V})zv0=d(z,V^)
Where d ( z , V ) inf { | z | , } d ( z , V ) inf { | z | , } d(z,V)-=i n f{|z-grad|,grad in grad}d(z, V) \equiv \inf \{|z-\nabla|, \nabla \in \nabla\}d(z,V)inf{|z|,} denotes the distance from z z zzz to V V VVV. An element V 0 V 0 V_(0)V_{0}V0 satisfying (7) is called a bost approximation element of z z zzz by elements in V V VVV. If every z Z z Z z in Zz \in ZzZ has a unique best approximation element in V V VVV then the set V V VVV is called Chebysherian .
R.R. Pholps [11] obtained some results concerning the relations between the property (U) and the unicity of best approximation in the dual of a normed space. As was shown in [10] similar results hold also in the Iipschitz case :
THSOREM 2. ([10]) A s joet Y Y YYY of a netric spacs X X XXX has proporty (V) if and oniy if its annihilator I I I^(_|_)I^{\perp}I is Chebyshorian subonce of Lipo 2 2 ^(2){ }^{2}2.
The proof of this theorem is based on the following lemma, which vill be used in the sequel :
LEVII 1. ([10]). Let X X XXX be a metric space, I a subset of X X XXX and Y Y Y^(_|_)Y^{\perp}Y the annihilator of Y Y YYY in Lip 0 X Lip 0 X Lip_(0)X\operatorname{Lip}_{0} XLip0X. If T Lip 0 X T Lip 0 X T inLip_(0)XT \in \operatorname{Lip}_{0} XTLip0X then d ( F , Y ) = I I d F , Y = I I d(F,Y^(_|_))=^('')I^('')Id\left(F, Y^{\perp}\right)= { }^{\prime \prime} I^{\prime \prime} Id(F,Y)=II and an alement δ 0 I δ 0 I delta_(0)inI^(_|_)\delta_{0} \in I^{\perp}δ0I. is a best aporoximation element for y y yyy by elements in I I I^(_|_)I^{\perp}I if and only if g 0 = F F 0 g 0 = F F 0 g_(0)=F-F_(0)g_{0}=F-F_{0}g0=FF0, where I 0 I 0 I_(0)I_{0}I0 is a norm preserving extension of F | I F I F|_(I)\left.F\right|_{I}F|I to X X XXX.
The proporty ( U U UUU ) can be charactorized also in terms of some decompositions of the Lipschitz dual Lip 0 I 0 I _(0)I{ }_{0} \mathrm{I}0I of X . To give this charactorization we noed first sone definitions and notations.
Lot It Id p 0 I p 0 I p_(0)Irarrp_{0} \mathrm{I} \rightarrowp0I Hip p 0 I p 0 I p_(0)Ip_{0} \mathrm{I}p0I denote the restriction operator, defined by :
(8) x ( T ) = F | I , F Lip p 0 X x ( T ) = F I , F Lip p 0 X quad x(T)=F|_(I),F in Lipp_(0)X\quad x(T)=\left.F\right|_{I}, F \in \operatorname{Lip} p_{0} Xx(T)=F|I,FLipp0X,
and iev e: Liy 0 I ( 0 I _(0)I rarr int(:}{ }_{0} I \rightarrow \int\left(\right.0I( IIp 0 X ) 0 X {:_(0)X)\left._{0} X\right)0X) denote the extension orerator, definod by :
(9)
e ( f ) = E ( f ; I ) , f L L p ˙ 0 X ˙ . e ( f ) = E ( f ; I ) , f L L p ˙ 0 X ˙ . e(f)=E(f;I)quad,quad f in LLp^(˙)_(0)X^(˙).e(f)=E(f ; I) \quad, \quad f \in L L \dot{p}_{0} \dot{X} .e(f)=E(f;I),fLLp˙0X˙.
Whore I ( f ; Y ) I ( f ; Y ) I(f;Y)\mathbb{I}(f ; Y)I(f;Y) denotes the set of all nom preserving extensions of I to X X XXX. Lot w : I i p 0 I ( I i p 0 I ) w : I i p 0 I I i p 0 I w:I_(ip_(0))I rarr int(I_(ip_(0))I)w: I_{i p_{0}} I \rightarrow \int\left(I_{i p_{0}} I\right)w:Iip0I(Iip0I) be the composition of the operators r r rrr and e, i.e.
(10)
w e x . w e x . w-=e@x.w \equiv e \circ x .wex.
Then, for F Lip 0 I F Lip 0 I F inLip_(0)IF \in \operatorname{Lip}_{0} IFLip0I, we have w ( F ) e ( r ( F ) ) = S ( I ( F ) ; Y ) w ( F ) e ( r ( F ) ) = S ( I ( F ) ; Y ) w(F)=>e(r(F))=S(I(F);Y)w(F) \Rightarrow e(r(F))=\mathbb{S}(I(F) ; Y)w(F)e(r(F))=S(I(F);Y) and I ( G ) = I ( F ) , G I = I ( F ) I I ( G ) = I ( F ) , G I = I ( F ) I I(G)=I(F),quad||G||_(I)=||I(F)||_(I)I(G)=I(F), \quad\|G\|_{I}=\|I(F)\|_{I}I(G)=I(F),GI=I(F)I, for all G E ( I ( F ) ; Y ) G E ( I ( F ) ; Y ) G in E(I(F);Y)G \in E(I(F) ; Y)GE(I(F);Y)
In goneral, the operator w w www is nulti-valued and w ( F ) w ( F ) w(F)w(F)w(F) is a conver subset of the ball of radius I ( F ) Y I ( F ) Y ||I(F)||_(Y)\|I(F)\|_{Y}I(F)Y and center 0 in L i p 0 X L i p 0 X Lip_(0)XL i p_{0} XLip0X.
Te can now state the theorem of characterization of property ( U ) ( U ) (U)(U)(U) :
THEOPI 3. If I I III is a subset of a netric space X X XXX then the following enserions are equivalent :
2 2 2^(@)2^{\circ}2 I has sroperty (V) ;
2 2 2^(@)2^{\circ}2 Ivery function F L j p 0 can be uniquely written in the F L j p 0 can be uniquely written in the  F inL_(j)p_(0)^("can be uniquely written in the ")F \in L_{j} p_{0}{ }^{\text {can be uniquely written in the }}FLjp0can be uniquely written in the 
form
(11) F = E + g , E w ( P ) , g I F = E + g , E w ( P ) , g I quad F=E+g,E in w(P),g inI^(_|_)\quad F=E+g, E \in w(P), g \in I^{\perp}F=E+g,Ew(P),gI,
and I X > I X I X > I X ||I||_(X) > ||I||_(X)\|I\|_{X}>\|I\|_{X}IX>IX, vinenever g 0 g 0 g!=0g \neq 0g0;
3 G = { H Lip 0 X , H Z = r ( H ) Y } 3 G = H Lip 0 X , H Z = r ( H ) Y 3^(@)quadG={H inLip_(0)X,||H||_(Z)=||r(H)||_(Y)}3^{\circ} \quad \mathscr{G}=\left\{H \in \operatorname{Lip}_{0} X,\|H\|_{Z}=\|r(H)\|_{Y}\right\}3G={HLip0X,HZ=r(H)Y} is the oniy subset of
Lipo X X XXX such that every I L i p 0 X I L i p 0 X I in Lip_(0)XI \in L i p_{0} XILip0X can be uniquely written in the 응펴 f = H + g , H G , g X f = H + g , H G , g X f=H+g,H in G,g inX^(_|_)f=H+g, H \in G, g \in X^{\perp}f=H+g,HG,gX and F X > H X F X > H X ||F||_(X) > ||H||_(X)\|F\|_{X}>\|H\|_{X}FX>HX if g 0 g 0 g!=0g \neq 0g0.
Proof. 1 0 2 0 1 0 2 0 1^(0)=>2^(0)1^{0} \Rightarrow 2^{0}1020. If the set Y Y YYY has property (U) then the oxtension operator 9 , delined by (9), is single-valued and so is the operator w w www defined by (10). For F I i 0 X F I i 0 X F in Ii_(0)XF \in I i_{0} XFIi0X the function D(F) in\in Lip X X X X _(X)X{ }_{X} XXX is the ouly norm preserving extension of I ( F ) I ( F ) I(F)I(F)I(F) to X X XXX, i.e. w ( B ) | Y = I ( F ) w ( B ) Y = I ( F ) w(B)|_(Y)=I(F)\left.w(B)\right|_{Y}=I(F)w(B)|Y=I(F) and w ( F ) X = I ( F ) Y w ( F ) X = I ( F ) Y ||w(F)||_(X)=||I(F)||_(Y)\|w(F)\|_{X}=\|I(F)\|_{Y}w(F)X=I(F)Y. It follows that g == F w ( F ) Y g == F w ( F ) Y g==F-w(F)inY^(_|_)g= =F-w(F) \in Y^{\perp}g==Fw(F)Y and F = w ( F ) + g F = w ( F ) + g F=w(F)+gF=w(F)+gF=w(F)+g is the unique decomposition of Y Y YYY With σ ~ I σ ~ I tilde(sigma)inI^(_|_)\tilde{\sigma} \in I^{\perp}σ~I. By the definition (3) of Lipschitz norm we have F X r ( F ) X F X r ( F ) X || vec(F)||_(X) >= ||r(F)||_(X)\|\vec{F}\|_{X} \geqslant\|r(F)\|_{X}FXr(F)X. The equality I X = I ( F ) Y I X = I ( F ) Y ||I||_(X)=||I(F)||_(Y)\|I\|_{X}=\|I(F)\|_{Y}IX=I(F)Y implies that F F FFF is also a norm preserving extension of I ( F ) I ( F ) I(F)I(F)I(F) and, by the unicity of the axtension it follows F = w ( F ) F = w ( F ) F=w(F)F=w(F)F=w(F), so that B = F w ( F ) = 0 B = F w ( F ) = 0 B=F-w(F)=0B=F-w(F)=0B=Fw(F)=0. Hence I X > I ( F ) Y I X > I ( F ) Y ||I||_(X) > ||I(F)||_(Y)\|I\|_{X}>\|I(F)\|_{Y}IX>I(F)Y if g 0 g 0 g in0g \in 0g0.
2 3 2 3 2^(@)=>3^(@)2^{\circ} \Rightarrow 3^{\circ}23. Let F F F inF \inF Lip 0 X 0 X _(0)X{ }_{0} X0X and let F = H + g F = H + g F=H+gF=H+gF=H+g the decomposition of F F FFF given in 2 2 2^(@)2^{\circ}2. As H W ( F ) = O ( I ( R ) ) H W ( F ) = O ( I ( R ) ) H in W(F)=O(I(R))H \in W(F)=O(I(R))HW(F)=O(I(R)) it follows that I ( F ) r ( H ) I ( F ) r ( H ) I(F)-=r(H)I(F) \equiv r(H)I(F)r(H) and H X = r ( F ) Y H X = r ( F ) Y ||H||_(X)=||r(F)||_(Y)\|H\|_{X}=\|r(F)\|_{Y}HX=r(F)Y, i.e. H φ j H φ j H invarphi_(j)H \in \varphi_{j}Hφj. The condition F X > E X F X > E X ||F||_(X) > ||E||_(X)\|F\|_{X} >\|E\|_{X}FX>EX, for g 0 g 0 g!=0g \neq 0g0, follows from the similar condition from 2 0 2 0 2^(0)2^{0}20.
3 2 3 2 3^(@)Longrightarrow2^(@)3^{\circ} \Longrightarrow 2^{\circ}32. Let F I p 0 X F I p 0 X F in Ip_(0)XF \in I p_{0} XFIp0X and let Z = H + g , H G , g I Z = H + g , H G , g I Z=H+g,H inG,g inI^(_|_)Z=H+g, H \in \mathscr{G}, g \in I^{\perp}Z=H+g,HG,gI be the unique decomposition of R R RRR given in 3 3 3^(@)3^{\circ}3. Then P g = B P g = B P-g=BP-g=BPg=B, I ( H ) I ( F ) I ( H ) I ( F ) I(H)-=I(F)I(H) \equiv I(F)I(H)I(F) and, By Lomma 1, I g X = E X = I ( H ) Y = r ( F ) Y == a ˙ ( B , Y ) I g X = E X = I ( H ) Y = r ( F ) Y == a ˙ B , Y ||I-g||_(X)=||E||_(X)=||I(H)||_(Y)=||r(F)||_(Y)==a^(˙)(B,Y^(_|_))\|I-g\|_{X}=\|E\|_{X}=\|I(H)\|_{Y}=\|r(F)\|_{Y}= =\dot{a}\left(B, Y^{\perp}\right)IgX=EX=I(H)Y=r(F)Y==a˙(B,Y), which shows that g g ggg is an element of best approximation for I I III by elements in I I I^(_|_)I^{\perp}I. If g 1 g 1 g_(1)g_{1}g1 is an other element of best approximation for T T TTT by elements in Y Y Y^(_|_)Y^{\perp}Y then, appealing again to Lema 1, there exists H 1 o ( x ( F ) ) H 1 o ( x ( F ) ) H_(1)in o(x(F))H_{1} \in o(x(F))H1o(x(F)) such that B 1 = F B 1 B 1 = F B 1 B_(1)=F-B_(1)B_{1}=F-B_{1}B1=FB1 and H 1 X = F g 1 X = d ( F , Y ) = r ( F ) Y = r ( H 2 ) Y H 1 X = F g 1 X = d F , Y = r ( F ) Y = r H 2 Y ||H_(1)||_(X)=||F-g_(1)||_(X)=d(F,Y^(_|_))=||r(F)||_(Y)=||r(H_(2))||_(Y)\left\|H_{1}\right\|_{X}=\left\|F-g_{1}\right\|_{X}=d\left(F, Y^{\perp}\right)=\|r(F)\|_{Y}=\left\|r\left(H_{2}\right)\right\|_{Y}H1X=Fg1X=d(F,Y)=r(F)Y=r(H2)Y, which shows that H 1 G H 1 G H_(1)inGH_{1} \in \mathscr{G}H1G. Taking into acsount the unicity assumption in 3 3 3^(@)3^{\circ}3, it follows G G 1 G G 1 G-=G_(1)G \equiv G_{1}GG1. Therefore, Y Y Y^(_|_)Y^{\perp}Y is a Chebyshovian subspace of Iido X X XXX and, by Theorem 2, the set Y has property (U).
Theorem 3 is completely proved.
DEFINITION 3. A subset I I III of a metric space I I III is called an lifideel If its annihilator I 1 I 1 I^(1)I^{1}I1 has a complement G G GGG in Lip I I I I I^(I)I^{I}II such that F X = G X + E X F X = G X + E X ||F||_(X)=||G||_(X)+||E||_(X)\|F\|_{X}=\|G\|_{X}+\|E\|_{X}FX=GX+EX, whonever I = G + E I = G + E I=G+EI=G+EI=G+E, with G G G G G inGG \in \mathcal{G}GG and E Y + , { 0 } E Y + , { 0 } E inY^(+),{0}E \in Y^{+},\{0\}EY+,{0}. The subset Y Y YYY is said to have property (HB) if Y Y Y^(_|_)Y^{\perp}Y has a comple mentary subspace ξ ξ xi\xiξ of Lip X X _(X){ }_{\mathrm{X}}X such that F X E X F X E X ||F||_(X) >= ||E||_(X)\|F\|_{\mathrm{X}} \geqslant\|E\|_{\mathrm{X}}FXEX, z X > G X z X > G X ||z||_(X) > ||G||_(X)\|z\|_{\mathrm{X}}>\|G\|_{\mathrm{X}}zX>GX, Whenever F = G + E F = G + E F=G+EF=G+EF=G+E, with G Y G Y G inYG \in \mathscr{Y}GY and H Σ i , { 0 } H Σ i , { 0 } H inSigma^(i),{0}H \in \Sigma^{i},\{0\}HΣi,{0}, for every function F I p ˙ 0 I F I p ˙ 0 I F in Ip^(˙)_(0)IF \in I \dot{p}_{0} IFIp˙0I.
THEOREM 4. If a subset Y Y YYY of a metric space X X XXX has the property (BB) then Y Y YYY has the property (U) .
Proof. Suppose that Y Y YYY has the property (HB) and has not the properfy (J). Then there exists a function f f f inf \inf Lip 0 I 0 I _(0)I{ }_{0} I0I having two distinct extensions I 1 , I 2 I 1 , I 2 I_(1),I_(2)I_{1}, I_{2}I1,I2 Lip 0 I 0 I _(0)I{ }_{0} \mathfrak{I}0I and the subspace I I I^(_|_)I^{\perp}I has a conplementary subspace G G GGG in Lip I I ^(I){ }^{I}I such that the condition in Definition 3 is fulfilled, implying F i = G i + E i F i = G i + E i F_(i)=G_(i)+E_(i)F_{i}=G_{i}+E_{i}Fi=Gi+Ei, with G i H G i H G_(i)inHG_{i} \in \mathcal{H}GiH and E i Y E i Y E_(i)inY^(_|_)E_{i} \in Y^{\perp}EiY for 1 = 1 , 2 1 = 1 , 2 1=1,21=1,21=1,2. As F 1 F 2 I F 1 F 2 I F_(1)-F_(2)inI^(_|_)F_{1}-F_{2} \in I^{\perp}F1F2I it follows that G 1 G 2 = F 1 I 2 G 1 G 2 = F 1 I 2 G_(1)-G_(2)=F_(1)-I_(2)G_{1}-G_{2}=F_{1}-I_{2}G1G2=F1I2 -- ( E 1 E 2 ) I E 1 E 2 I (E_(1)-E_(2))inI^(_|_)\left(E_{1}-E_{2}\right) \in I^{\perp}(E1E2)I, hence G 1 = G 2 = G ( ζ I = { 0 } G 1 = G 2 = G ζ I = { 0 } G_(1)=G_(2)=G(zeta nnI^(_|_)={0}:}G_{1}=G_{2}=G\left(\zeta \cap I^{\perp}=\{0\}\right.G1=G2=G(ζI={0}, as ξ ξ xi\xiξ and I I I^(_|_)I^{\perp}I are complementary subspaces of Ifipo X X XXX ). Therefore F 1 = G + H 1 F 1 = G + H 1 F_(1)=G+H_(1)F_{1}=G+H_{1}F1=G+H1 and F 2 = G + E 2 F 2 = G + E 2 F_(2)=G+E_(2)F_{2}=G+E_{2}F2=G+E2. Now, if E 2 0 E 2 0 E_(2)!=0E_{2} \neq 0E20 then F 1 Σ > G I F 1 Σ > G I ||F_(1)||_(Sigma) > ||G||_(I)\left\|F_{1}\right\|_{\Sigma}>\|G\|_{I}F1Σ>GI so that f I == F 1 Σ > G Σ r ( G ) I = I Y f I == F 1 Σ > G Σ r ( G ) I = I Y ||f||_(I)==||F_(1)||_(Sigma) > ||G||_(Sigma) >= ||r(G)||_(I)=||I||_(Y)\|f\|_{I}= =\left\|F_{1}\right\|_{\Sigma}>\|G\|_{\Sigma} \geqslant\|r(G)\|_{I}=\|I\|_{Y}fI==F1Σ>GΣr(G)I=IY. If H 1 0 H 1 0 H_(1)-=0H_{1} \equiv 0H10 then H 2 H 1 = 0 H 2 H 1 = 0 H_(2)!=H_(1)=0H_{2} \neq H_{1}=0H2H1=0, hence G = F 1 G = F 1 G=F_(1)G=F_{1}G=F1 and, by Desinition 3 , the equality F 1 = F 2 + H 2 F 1 = F 2 + H 2 F_(1)=F_(2)+H_(2)F_{1}=F_{2}+H_{2}F1=F2+H2 implies P I = F 1 X > F 2 X = S I P I = F 1 X > F 2 X = S I ||P||_(I)=||F_(1)||_(X) > ||F_(2)||_(X)=||S||_(I)\|P\|_{I}=\left\|F_{1}\right\|_{X}>\left\|F_{2}\right\|_{X}=\|S\|_{I}PI=F1X>F2X=SI. The obtained contradictions shows that the set I I III cannot have the propetty (HB). Theorem 4 is completejy proved.
THEOREIX 5. If the subset Y Y YYY of X X XXX has the property ( H B H B HBH BHB ) and F Lip p 0 , F F Lip p 0 , F F in Lipp_(0),FF \in \operatorname{Lip} p_{0}, FFLipp0,F of 0 , then F G F G F inGF \in \mathscr{G}FG if and only if r ( F ) I = F X r ( F ) I = F X ||r(F)||_(I)=||F||_(X)\|r(F)\|_{I}=\|F\|_{X}r(F)I=FX, There ζ ζ zeta\zetaζ is the complementary subspace of r r r^(_|_)r^{\perp}r given in Definition 3 .
Proof. Let F ξ , F 0 F ξ , F 0 F in xi,F!in0F \in \xi, F \notin 0Fξ,F0, and let G G GGG be a norm preserving extension of x ( F ) x ( F ) x(F)x(F)x(F) to I . I I_(". ")I_{\text {. }}I Let G = G 1 + H 1 , G 1 ξ , H 2 X G = G 1 + H 1 , G 1 ξ , H 2 X G=G_(1)+H_(1),G_(1)in xi,H_(2)inX^(_|_)G=G_{1}+H_{1}, G_{1} \in \xi, H_{2} \in X^{\perp}G=G1+H1,G1ξ,H2X be the
decomposition of G G GGG given by Definition 3. Supposing E 1 0 E 1 0 E_(1)!=0E_{1} \neq 0E10, one obtains the contradiction G I > G 1 I I ( G 1 ) I = I ( I ) I == G 1 2 G I > G 1 I I G 1 I = I ( I ) I == G 1 2 ||G||_(I) > ||G_(1)||_(I) >= ||I(G_(1))||_(I)=||I(I)||_(I)==||G_(1)||_(2)\|G\|_{I}>\left\|G_{1}\right\|_{I} \geqslant\left\|I\left(G_{1}\right)\right\|_{I}=\|I(I)\|_{I}= =\left\|G_{1}\right\|_{2}GI>G1II(G1)I=I(I)I==G12. Therefore H 1 = 0 H 1 = 0 H_(1)=0H_{1}=0H1=0 and G = G 1 ζ 1 G = G 1 ζ 1 G=G_(1)inzeta_(1)G=G_{1} \in \zeta_{1}G=G1ζ1. As ζ 1 ζ 1 zeta_(1)\zeta_{1}ζ1 is a subspace of iip 0 0 _(0){ }_{0}0 it follows F G G F G G F-G in GF-G \in GFGG. But F G F G F-GF-GFG is in I I I-I-I too, bocauso r ( F ) = r ( G ) r ( F ) = r ( G ) r(F)=r(G)r(F)=r(G)r(F)=r(G), so that R G ξ X = { 0 } R G ξ X = { 0 } R-G in xi nnX^(_|_)={0}R-G \in \xi \cap X^{\perp}=\{0\}RGξX={0}, i.s. F = G G F = G G F=G inGF=G \in \mathcal{G}F=GG.
Conversely, suppose that F K p 0 x ~ , F 0 F K p 0 x ~ , F 0 F in Kp_(0) tilde(x),F!=0F \in K p_{0} \tilde{x}, F \neq 0FKp0x~,F0, is such that x ( F ) x = P X ( > 0 ) x ( F ) x = P X ( > 0 ) ||x(F)||_(x)=||P||_(X)( > 0)\|x(F)\|_{x} =\|P\|_{X}(>0)x(F)x=PX(>0). Lot I = G + H I = G + H I=G+HI=G+HI=G+H with G ξ , H I L G ξ , H I L G in xi,H inI^(L)G \in \xi, H \in I^{L}Gξ,HIL. If E 0 E 0 E!=0E \neq 0E0 then P I > G X P I > G X ||P||_(I) > ||G||_(X)\|P\|_{I}>\|G\|_{X}PI>GX and the equality r ( I ) = r ( G ) r ( I ) = r ( G ) r(I)=r(G)r(I)=r(G)r(I)=r(G) gives the contradic tion x ( F ) Z = F Z > G Z = x ( G ) Y = r ( F ) Y x ( F ) Z = F Z > G Z = x ( G ) Y = r ( F ) Y ||x(F)||_(Z)=||F||_(Z) > ||G||_(Z)=||x(G)||_(Y)=||r(F)||_(Y)\|x(F)\|_{Z}=\|F\|_{Z}>\|G\|_{Z}=\|x(G)\|_{Y}=\|r(F)\|_{Y}x(F)Z=FZ>GZ=x(G)Y=r(F)Y, which shows that H = 0 H = 0 H=0H=0H=0 and F = G φ S F = G φ S F=G invarphi_(S)F=G \in \varphi_{S}F=GφS.
THFOPN 6. If the subset Y Y YYY of a metric snnce X X XXX has the property (HB) then the subsoace ζ ζ zeta\zetaζ (given in Definition 3) is dropetrically isomorphic to the space Lip 0 I 0 I _(0)^(I){ }_{0}{ }^{I}0I.
Proof. By Theorem 4, tae subset Y Y YYY has the property (U) , so that the restriction r 1 r 1 r_(1)r_{1}r1 of the restriction operator r r rrr to ξ j ξ j xi_(j)\xi_{j}ξj is single-valued and linear. By Theorem 5, r 1 ( G ) j = G X r 1 ( G ) j = G X ||r_(1)(G)||_(j)=||G||_(X)\left\|r_{1}(G)\right\|_{j}=\|G\|_{X}r1(G)j=GX, for all G ζ ξ G ζ ξ G inzeta_(xi)G \in \zeta_{\xi}Gζξ, showing that T 1 T 1 T_(1)T_{1}T1 is an loometry.
THEORSU 7. If the subset X X XXX of a motric space X X XXX pes the proper ty (HB) , tien the extension operator *∣\cdot \mid ip 0 Y 0 Y _(0)Yrarr_{0} \mathrm{Y} \rightarrow0Y Lip c X c X _(c)X_{c} \mathrm{X}cX de linear.
Proof. Let : ~ : ~ tilde(:)\tilde{:}:~ : Lip I ζ j I ζ j Irarrzeta_(j)\mathrm{I} \rightarrow \zeta_{j}Iζj be the inverse of the restiliction operator r 1 = r | e r 1 = r e r_(1)=r|_(e)r_{1}=\left.r\right|_{e}r1=r|e & longrightarrow\longrightarrow Lip 0 I 0 I _(0)I{ }_{0} \mathrm{I}0I which, by Theorem 6, is an isoattrical isomorpicism between ζ ζ zeta\zetaζ and Lipo Y Y YYY. Then is linear and e = j 0 ~ e = j 0 ~ e=j@ tilde(0)e=j \circ \tilde{0}e=j0~ where j : ζ j : ζ j:zeta rarrj: \zeta \rightarrowj:ζ Lip j x j x jxj xjx, denotes the imbedding operator of ζ ζ zeta\zetaζ into Ling x x xxx.

RAITPRINCES

1 ALPSEN, E.M., EPFROSS, E. , Structure in real Banach speces , calt ac 1 ann. of Math. 96 (1972), 98-173.
2 CZIPSTR, J., GHENR, L., Extension of Functions Eatisfying a Liocchite conditions, Acta Hath, Acad. Sci. Hungar 6 (1955), 213-220
3 Tatrourr, E ., Sélections 11néaires essociées au Théorige de Fohn - Expach , J. of Functional Analysis 21 (2972), 436-452.
4 EETIMSILD, J., 14-jdec.ls, HB - subroaces and Conpact Operators, Indiana Univ. Math. J. 28 (6) (1979), 927 - 934.
5 EMTHIPID, J., Anote on M-ideals in B(X), Proc, Amer. Hat. Soc. 98 (1) (1980) , 89-92.
6 HOLIES, R.B., SCRANTON, B., WARD, J.D., Approzimation from the appe of compect operators and other x x x-x-x ideals, Duke Math. J. 42 (1975), 259-26%.
7 BOLITS, R.B., Geonetric Functionol Anclssie and its Applicationg, Springer - Verlag, Now York - Heidelberg - Berlis , 1975 •
8 Mo SHANE, E.J., Thonsion of rango of functions, Bull. Amor. Math. Soc. 40 (1954) , 837-842.
9 JOEWSON, J.A., Benech Speces of Jipschitz Punctions and Vector - Velued Iipschitz Functions, Trans, knor. Meth. Soc. 248 (1970), 147-169 a pt at eccon abill
Eipschite Functions, J. Appror. Theory 29 (3) (1977) , 222-230 。
11 RESTPS, R.R., Uniqueness of Bohn - Banach Extension and Uniqus Best Approximation, Trans. Amer. Math. Boc. 45 ( 1950 ) , 238 255 ( 1950 ) , 238 255 (1950),238-255(1950), 238-255(1950),238255.
12 OJ1, S., On the uniquaness of the norr proservine extengion of linear luuctional in the Hohu - Bancon Feooren, Proc. Acad. Science Estonian SSR 33 (4) (2984), 422-433 (Russian)
Insvitutul do Calcul
Oficiul Postal 1
C. P. 68
3400 Cluj-Hiapoca
Romenia
This note is in final form and no version of 1t is or will be submitted for publication elsawhere.

Related Posts

M-ideals in metric spaces

Abstract Considering a metric space and its Lipschitz dual one defines the notion of M-ideal and HB-subspace of a metric…

An application of a theorem of McShane

Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, An application of a theorem…

On a problem of extremum

Abstract AuthorsCostica Mustata Institutul de Calcul KeywordsPaper coordinatesC. Mustăţa, On a problem of extremum, ”Babeş-Bolyai” Univ., Research Seminars, Seminar on…

Common selections for the metric projections

Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, Common selections for the metric…

Selections associated to the metric projection

Abstract AuthorsStefan Cobzas “Tiberiu Popovicviu” Institute of Numerical Analysis, Romanian Academy, Romania Costica Mustata “Tiberiu Popovicviu” Institute of Numerical Analysis,…