[1] Cobzas, S., Mustata, C., Norm Preserving Exctension of Convex Lipschitz Functions, J.A.T., 24 (1978), 236-244.
[2] Dunham, C.B., Chebyshev approximation with a null space, Proc. Amer. Math. Soc. 41 (1973) 557-558.
[3] Johnson, J.A., Banach Spaces of Lipschitz Functions and Vector-Valued Lipschitz Funcitons, Trans. Amer. Math. Soc. 148 (1970), 147-169.
[4] Shane, E.J., Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
[5] Mustata, C., Best Approximaiton and Unique Extension of Lipschitz Functions, J.A.T., 19 (1977), 222-230.
[6] Roy, A.K., Extreme Points and Linear Isometries of Banach Space of Lipschitz Functions, Canad. J. of Math. 20 (1968), 1150-1164.
[7] Singer, I., Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale, Edit. Acad. R.S. Română, București, 1967.
Introduction. Let AA be a subset of the interval [a,b]sub R[a, b] \subset R. A function f:A rarr Rf: A \rightarrow R is called Lipschitz if there exists L >= 0L \geqslant 0 such that
{:(1)|f(x)-f(y)| <= L*|x-y|",":}\begin{equation*}
|f(x)-f(y)| \leqslant L \cdot|x-y|, \tag{1}
\end{equation*}
for all x,y in Ax, y \in A. The smallest number LL for which the inerguality
(1) holds is called the Lipschitz norm of ff and is denotod by ||f||_(L)\|\mathbf{f}\|_{L}. The Lipschitz norm of ff can be calculated also by the formula
(2) ||f||_(L)=s u p{|f(x)-f(y)|//|x-y|:x,y in A,x!=y}\|f\|_{L}=\sup \{|f(x)-f(y)| /|x-y|: x, y \in A, x \neq y\}.
Denote by Lip A the set of all real valued Lipschitz func tions on A, i.e.
(3) quad Lip A={P,f:A rarr R,f\quad \operatorname{Lip} A=\{P, f: A \rightarrow R, f is Lipschitz }\}.
With the usual (i.e. pointwise ) operations of addition and multiplication by scalars, Lip A is a vector space.
A Lipschitz extension of ff to [a,b][a, b] is a Lipschitz function [a,b]rarrR[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R} such that
F|_(A)^(')=P" and "||F||_(L)=||I||_(L)\left.F\right|_{A} ^{\prime}=P \text { and }\|F\|_{L}=\|I\|_{L}
By a result of Mo SHANE [4] every function in Iip AA has at least one Lipschitz extension in Lip[a,b]\operatorname{Lip}[\mathrm{a}, \mathrm{b}]. More exactly, the following two functions
F_(1)(x)=s u p{f(y)-||f||_(L)*|x-y|:y in A}F_{1}(x)=\sup \left\{f(y)-\|f\|_{L} \cdot|x-y|: y \in A\right\}
and.
{:(6)F_(2)(x)=i n f{f(y)+||f||_(I^('))*|x-y|quad:quad y inA}:}\begin{equation*}
F_{2}(x)=\inf \left\{f(y)+\|f\|_{I^{\prime}} \cdot|x-y| \quad: \quad y \in \mathbb{A}\right\} \tag{6}
\end{equation*}
are Lipschitz extensions of ff to [a,b][a, b]. Denoting by E(f;[a,b])E(f ;[a, b]) the set of all Lipschitz extensions of ff to [a,b][a, b], i.e.
(7) E(f;[a,b])={F in Lip[a,b]:F|_(A)=f:}\mathbb{E}(f ;[a, b])=\left\{F \in \operatorname{Lip}[a, b]:\left.F\right|_{A}=f\right. and {:||F||_(L)=||f||_(L)}\left.\|F\|_{L}=\|f\|_{L}\right\}
the following assertions hold true
(a) quadF_(1)(x) <= F(x) <= F_(2)(x),x in[a,b]\quad F_{1}(x) \leq F(x) \leq F_{2}(x), x \in[a, b], for all F inR(f;[a,b])F \in \mathbb{R}(f ;[a, b]);
(b) quad E(f;[a,b])\quad E(f ;[a, b]) is a convex subset of Lip[a,b]\operatorname{Lip}[a, b];
(c) The functions F_(1)\mathrm{F}_{1} and F_(2)\mathrm{F}_{2} are extreme points of E(f;[a,b])E(f ;[a, b]).
By the definition of the Lipschitz noxm ( or by (2) ), ||f||_(L)=0\|f\|_{L}=0 if and only if f=f= constant and therefore ||\|." II is not actually a norm on Lip A\operatorname{Lip} A but it is a norm on the space Lip _(0){ }_{0} of all functions in Lip AA vanishing at a fixed point x_(0)in Ax_{0} \in A. The space Lip _(A)^(A){ }_{\mathrm{A}}{ }^{\mathrm{A}} with the Lipschitz norm is a dual Banach space (see [3]).
2. Lipschitz extensions from finite subsets of [a,b][a, b].
Let C[a,b]C[a, b] be the space of all real valued continuous functions on [a,b][a, b] and let
{:(8)u={x_(0),x_(1),dots,x_(n)}quad","quad a <= x_(0) < x_(1) < dots < x_(n) <= b quad",":}\begin{equation*}
u=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \quad, \quad a \leqslant x_{0}<x_{1}<\ldots<x_{n} \leqslant b \quad, \tag{8}
\end{equation*}
be a linite subset of [a,b][\mathrm{a}, \mathrm{b}]. Then obviously, the restriction f|_(11)\left.f\right|_{11} of aa function f in C[a,b]f \in C[a, b] to MM is in Lip M\operatorname{Lip} M and
(9) quad|f|_(M)||_(L)=max{|f(x_(i))-f(x_(j))|//|x_(i)-x_(j)|:i,j=0,1,dots n,i!=j}\quad|f|_{M} \|_{L}=\max \left\{\left|f\left(x_{i}\right)-f\left(x_{j}\right)\right| /\left|x_{i}-x_{j}\right|: i, j=0,1, \ldots n, i \neq j\right\} Let U:C[a,b]rarr Lip MU: C[a, b] \rightarrow \operatorname{Lip} M be the restriction operator, i.e.
(10)
U(f)=f|_(M)," for "f in C[a,b]U(f)=\left.f\right|_{M}, \text { for } f \in C[a, b]
By the above quated result of HC SHANE, f|_(M)\left.f\right|_{M} has at least a Lipschitz extension F in Lip[a,b]F \in \operatorname{Lip}[a, b]. Let V:Lip M rarrP(Lip[a,b])V: \operatorname{Lip} M \rightarrow \mathscr{P}(\operatorname{Lip}[a, b]) the extension operator defined by
{:(11)V(g)=E(g;[a","b])","quad g in Lip M",":}\begin{equation*}
V(g)=E(g ;[a, b]), \quad g \in \operatorname{Lip} M, \tag{11}
\end{equation*}
and let W:C[a,b]rarrG^(rho)(Lip[a,b])W: C[a, b] \rightarrow \mathcal{G}^{\rho}(\operatorname{Lip}[a, b]) be the composition of UU and VV
{:(12)W=V_(0)U:}\begin{equation*}
W=V_{0} U \tag{12}
\end{equation*}
In general WW is a multivalued operator (point to set) . A function f in C[a,b]f \in C[a, b] such that f in W(f)f \in W(f) is called a fix point of WW.
Obviously, the set of fix points of the operator WW is non-void.
Indeed, if g in Lip Mg \in \operatorname{Lip} M and ff is a Lipschitz extension of GG to [a,b][a, b], then f in W(f)f \in W(f). The fix points of the operator WW are characterized in Theorem 2.1 below.
" For "x,y in[a,b],x!=y" and "f in C[a,b]", put "\text { For } x, y \in[a, b], x \neq y \text { and } f \in C[a, b] \text {, put }
{:(13)[x","y;f]=(f(x)-f(y))//(x-y):}\begin{equation*}
[x, y ; f]=(f(x)-f(y)) /(x-y) \tag{13}
\end{equation*}
and
{:(14)f(x","y;f)(t)=[x","y;f]*(t-x)+f(x)","quad t in[a","b]:}\begin{equation*}
f(x, y ; f)(t)=[x, y ; f] \cdot(t-x)+f(x), \quad t \in[a, b] \tag{14}
\end{equation*}
2.1 THEORTM, Let finC[a,b]\mathrm{f} \in \mathrm{C}[\mathrm{a}, \mathrm{b}] and let M be the set ( e ).
Then f in W(f)f \in W(f) if and only if there exists an index k in{0,1,dots,n-1}k \in\{0,1, \ldots, n-1\} such that
(15) s u p{|[x,y;f]|:quad x,y in[a,b],quad x!in y}=|[x_(k),x_(k+1);f]|\sup \{|[x, y ; f]|: \quad x, y \in[a, b], \quad x \notin y\}=\left|\left[x_{k}, x_{k+1} ; f\right]\right|.
Proof. If f in W(f)f \in W(f) then f in E(f|_(M);[a,b])f \in E\left(\left.f\right|_{M} ;[a, b]\right) and ||I||_(L)=||f||_(M)||_(L)=max{|[x_(j),x_(j+1);f]|:j=0,1,dots,n-1}\|I\|_{L}=\|f\|_{M} \|_{L}=\max \left\{\left|\left[x_{j}, x_{j+1} ; f\right]\right|: j=0,1, \ldots, n-1\right\}
so that, there exists k in{0,1,dots,n-1}k \in\{0,1, \ldots, n-1\} such that ||f||_(M)||_(L)=\|f\|_{M} \|_{L}= |[x_(k),x_(k+1);f]|\left|\left[x_{k}, x_{k+1} ; f\right]\right|, and the relation (15) holds.
Conversely, if the relation (15) holds for a index k in{0,1,dotsk \in\{0,1, \ldots, n-1}n-1\}, then |[x_(k),x_(k+1);f]|=s u p{|[x,y;f]|:x,y in[a,b],x!=y} >=\left|\left[x_{k}, x_{k+1} ; f\right]\right|=\sup \{|[x, y ; f]|: x, y \in[a, b], x \neq y\} \geqslant >= max{|[x_(j),x_(j+1);f]|:j=0,1,dots,n-1}=||f|_(M)||_(L)\geqslant \max \left\{\left|\left[x_{j}, x_{j+1} ; f\right]\right|: j=0,1, \ldots, n-1\right\}=\left\|\left.f\right|_{M}\right\|_{L}.
Therefore, |f|||_(I)=|[x_(k),x_(k+1);f]|=||f||_(L)|f|\left\|_{I}=\left|\left[x_{k}, x_{k+1} ; f\right]\right|=\right\| f \|_{L}, which shows that f in W(f)f \in W(f).
Theoret 2.1 has some corollaries.
2.2 COROITARY . If the relation (15) holds for an index k in{0,1,dots,n-1}k \in\{0,1, \ldots, n-1\} then
f(x)=L(x_(k),x_(k+1);f)(x)" for all "x in[x_(k),x_(k+1)]f(x)=\mathcal{L}\left(x_{k}, x_{k+1} ; f\right)(x) \text { for all } x \in\left[x_{k}, x_{k+1}\right]
Proof. If f(x^('))!=ℓ(x_(k),x_(k+1);f)(x^('))f\left(x^{\prime}\right) \neq \ell\left(x_{k}, x_{k+1} ; f\right)\left(x^{\prime}\right), for an x^(')in(x_(k),x_(k+1))x^{\prime} \in\left(x_{k}, x_{k+1}\right)
then
{:[max{|[x_(k),x^(');f]|,:}{:|[x^('),x_(k+1);f]|} > |[x_(k),x_(k+1);f]|=],[*=s u p{|[x","y;f]|:x","y in[a","b]","x!=y}]:}\begin{aligned}
\max \left\{\left|\left[x_{k}, x^{\prime} ; f\right]\right|,\right. & \left.\left|\left[x^{\prime}, x_{k+1} ; f\right]\right|\right\}>\left|\left[x_{k}, x_{k+1} ; f\right]\right|= \\
\cdot & =\sup \{|[x, y ; f]|: x, y \in[a, b], x \neq y\}
\end{aligned}
which is a contradiction.
2.3 COROILARY. If f in W(f)f \in W(f) then f(x)=F(x),x in[x_(k),x_(k+1)]f(x)=F(x), x \in\left[x_{k}, x_{k+1}\right], for 311. F in W(f)F \in W(f), where k in{0,1,dots,n-1}k \in\{0,1, \ldots, n-1\} is the index for which relation (25) is true.
Proof. If F in W(+-)F \in W( \pm) then s u p{|[x,y;F]|:quadx,yin[a,b],x!=y}=||F||_(I)=||f||_(M)||_(L)=∣[x_(k),x_(k+1);F||^(F)∣:}\sup \{|[\mathrm{x}, \mathrm{y} ; \mathrm{F}]|: \quad \mathrm{x}, \mathrm{y} \in[\mathrm{a}, \mathrm{b}], \mathrm{x} \neq \mathrm{y}\}=\|\mathrm{F}\|_{\mathrm{I}}=\|\mathrm{f}\|_{\mathrm{M}} \|_{\mathrm{L}}=\mid\left[\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1} ; \mathrm{F} \|^{\mathrm{F}} \mid\right.
and Corollary - 2.3 follows from Corollary 2.2 .
2.4 COROTLARY. If a=x_(0)a=x_{0} and x_(n)=bx_{n}=b, then
(a) s u p{|[x,y;f]|:x,y in[a,b],x!=y}=|[x_(0),x_(n);f]|\sup \{|[x, y ; f]|: x, y \in[a, b], x \neq y\}=\left|\left[x_{0}, x_{n} ; f\right]\right|, implies f(x)=f(x_(0),x_(n);f)(x)f(x)=f\left(x_{0}, x_{n} ; f\right)(x), for all x in[a,b]x \in[a, b], and
(b) s u p{|[x,y;e]|:x,y in{a,b],x!=y}=|[x_(k),x_(k+1);f]|\sup \{|[x, y ; e]|: x, y \in\{a, b], x \neq y\}=\left|\left[x_{k}, x_{k+1} ; f\right]\right|, k=0,1,dots,n-1k=0,1, \ldots, n-1, implies f(x)=f(x_(k),x_(k+1);f)(x)f(x)=f\left(x_{k}, x_{k+1} ; f\right)(x), x in[x_(k),x_(k+1)]quad,k=0,1,dots,n-1x \in\left[x_{k}, x_{k+1}\right] \quad, k=0,1, \ldots, n-1.
Combining Corollaries 2.3 and 2.4 it follows
2.5 COROLLARY. If f in Iip[a,b],x_(o)=a,x_(n)=bf \in \operatorname{Iip}[a, b], x_{o}=a, x_{n}=b and ||f||_(L)==∣[x_(k),x_(k+1);f],k=0,1,dots,n-1\|f\|_{L}= =\mid\left[x_{k}, x_{k+1} ; f\right], k=0,1, \ldots, n-1, then W(f)={f}W(f)=\{f\}.
3. Faces and extreme points.
Let XX be a normed space and B(X)={XGX:||x|| <= 1}B(X)=\{X G X:\|x\| \leq 1\} its closed unit ball. A subset A sube B(X)A \subseteq B(X) is called an extremal subset (a face) of B(X)B(X) if alphaf_(1)+(1-alpha)f_(2)in A\alpha f_{1}+(1-\alpha) f_{2} \in A for f_(1),f_(2)in B(X)f_{1}, f_{2} \in B(X) and a number alpha,0 < alpha < 1\alpha, 0<\alpha<1, implies f_(1),f_(2)in Af_{1}, f_{2} \in A. If AA contains exactly one point ff, then ff is called an extreme point of B(X)B(X).
Let MM be a finite set of real numbers
and M={x_(0),x_(1),dots,x_(n)}quad,quadx_(0) < x_(1) < dots < x_(n)M=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \quad, \quad x_{0}<x_{1}<\ldots<x_{n} Lip_(0)M^(')={f,quad:}\operatorname{Lip}_{0} M^{\prime}=\left\{f, \quad\right. f :M rarr R,quad f: M \rightarrow R, \quad f is Lipschitz and {:f(x_(0))=0}\left.f\left(x_{0}\right)=0\right\}.
3.1 THEOREM. The function f in B(:}f \in B\left(\right. Lip {:_(0)M)\left._{0} M\right) is an extreme point of B(Lip_(0)M)B\left(\operatorname{Lip}_{0} M\right) if and only if
for k=0,1,dots,n-1k=0,1, \ldots, n-1.
Proof. Suppose that relation (16) do not hold and let kin{0,1,dots,n-1}\mathbb{k} \in\{0,1, \ldots, n-1\}𝕜 and epsi > 0\varepsilon>0 be such that
f_(1)(x)={[f(x)",",x in{x_(0),x_(1),dots,x_(k)}],[f(x)+delta",",x in{x_(k+1),dots,x_(n)}]:}f_{1}(x)= \begin{cases}f(x), & x \in\left\{x_{0}, x_{1}, \ldots, x_{k}\right\} \\ f(x)+\delta, & x \in\left\{x_{k+1}, \ldots, x_{n}\right\}\end{cases}
and
f_(2)(x)={[f(x)",",x in{x_(0),x_(1),dots,x_(k)}],[f(x)-delta",",x in{x_(k+1),dots,x_(n)}]:}f_{2}(x)= \begin{cases}f(x), & x \in\left\{x_{0}, x_{1}, \ldots, x_{k}\right\} \\ f(x)-\delta, & x \in\left\{x_{k+1}, \ldots, x_{n}\right\}\end{cases}
where delta=(epsi//2)(x_(k+1)-x_(k))\delta=(\varepsilon / 2)\left(x_{k+1}-x_{k}\right).
Because
{:[(|f(x_(k+1))+delta-f(x_(k))|)/(x_(k+1)-x_(k)) <= 1-epsi//2 < 1quad" and "],[(|f(x_(k+1))-delta-f(x_(k))|)/(x_(k+1)-x_(k)) <= 1-epsi//2 < 1", it follows that "]:}\begin{aligned}
& \frac{\left|f\left(x_{k+1}\right)+\delta-f\left(x_{k}\right)\right|}{x_{k+1}-x_{k}} \leqslant 1-\varepsilon / 2<1 \quad \text { and } \\
& \frac{\left|f\left(x_{k+1}\right)-\delta-f\left(x_{k}\right)\right|}{x_{k+1}-x_{k}} \leqslant 1-\varepsilon / 2<1 \text {, it follows that }
\end{aligned}
||f_(1)||_(L)=1=||f_(2)||_(J)\left\|f_{1}\right\|_{L}=1=\left\|f_{2}\right\|_{J}. But f=(1//2)(f_(1)+f_(2))f=(1 / 2)\left(f_{1}+f_{2}\right), so that ff is not an extreme point of B(Lip_(0)M)B\left(\operatorname{Lip}_{0} M\right).
Suppose now that condition (16) is fulfilled and there exist two functions g_(1),g_(2)in B(Lip_(0)M)g_{1}, g_{2} \in B\left(\operatorname{Lip}_{0} M\right) such that g_(1)!=f!=g_(2)g_{1} \neq f \neq g_{2} and f=(1//2)(g_(1)+g_(2))f=(1 / 2)\left(g_{1}+g_{2}\right). Let x_(i)x_{i} be the smallest element of MM for which g_(1)(x_(i))!=f(x_(i))g_{1}\left(x_{i}\right) \neq f\left(x_{i}\right). As g_(1)(x_(0))=f(x_(0))=0g_{1}\left(x_{0}\right)=f\left(x_{0}\right)=0 and g_(2)(x_(0))=0==f(x_(0))g_{2}\left(x_{0}\right)=0= =f\left(x_{0}\right), it follows i >= 1i \geqslant 1.
Case I. f(x_(i)) > f(x_(i-1))f\left(x_{i}\right)>f\left(x_{i-1}\right) and g_(1)(x_(i)) > f(x_(i))g_{1}\left(x_{i}\right)>f\left(x_{i}\right). In this case
which implies ||g_(1)||_(L) > 1\left\|g_{1}\right\|_{L}>1, i.e. quadg_(1)!in B(Lip_(0)M)\quad g_{1} \notin B\left(\operatorname{Lip}_{0} M\right). ||E_(1)||_(L) > g_(1)!in B(Lip M)\left\|\mathrm{E}_{1}\right\|_{L}>\mathrm{g}_{1} \notin B(\operatorname{Lip} M). . . . . . .
Case II. f(x_(i)) > f(x_(i-1))f\left(x_{i}\right)>f\left(x_{i-1}\right) and g_(1)(x_(i)) < f(x_(i))g_{1}\left(x_{i}\right)<f\left(x_{i}\right). In this case g_(2)(x_(1))=2f(x_(1))-g_(1)(x_(i)) > f(x_(i))g_{2}\left(x_{1}\right)=2 f\left(x_{1}\right)-g_{1}\left(x_{i}\right)>f\left(x_{i}\right) and
so that ||g_(2)||_(L) > 1\left\|g_{2}\right\|_{L}>1, i.e. g_(2)!in B(Iipp_(0)M)g_{2} \notin B\left(\operatorname{Iip} p_{0} M\right).
In the remaining cases, i.e. f(x_(i)) < f(x_(i-1))f\left(x_{i}\right)<f\left(x_{i-1}\right) and g_(1)(x_(i)) > f(x_(i))g_{1}\left(x_{i}\right)>f\left(x_{i}\right) or f(x_(i)) < f(x_(i-1))f\left(x_{i}\right)<f\left(x_{i-1}\right) and g_(1)(x_(i)) < f(x_(i))g_{1}\left(x_{i}\right)<f\left(x_{i}\right), we have similarly ||g_(2)||_(L) > 1\left\|g_{2}\right\|_{L}>1, respectively ||g_(1)||_(I) > 1\left\|g_{1}\right\|_{I}>1. The obtained contradictions show that ff must be an extreme point of B(Lip_(0)M)B\left(\operatorname{Lip}_{0} M\right).
3.2 Remark. Taking in (16) all possible signs, it follows that the unit ball of the space Lip _(0)M{ }_{0} M has exactly 2^(n+1)2^{n+1} extreme points.
3.3 COROLLARY. Let fin Lip[a,b],M={x_(0),x_(1),dots,x_(n)}\mathrm{f} \in \operatorname{\operatorname {Lip}}[\mathrm{a}, \mathrm{b}], \mathrm{M}=\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}, a=x_(0) < x_(1) < dots < x_(n)=ba=x_{0}<x_{1}<\ldots<x_{n}=b, and f(x_(0))=0f\left(x_{0}\right)=0. If
for all k=0,1,dots,n-1k=0,1, \ldots, n-1, then ff is an extreme point of the unit ball of Lip_(o)[a,b]\operatorname{Lip}_{\mathrm{o}}[\mathrm{a}, \mathrm{b}].
3.4 Remark. If ff is an extreme point of B(Lip_(0)M)B\left(\operatorname{Lip}_{0} M\right) and the set MM is as in Corollary 3.3 , then the unique Lipschitz extension FF of f,F(x)=s u p{f(x_(i))-|x-x_(i)|:i=0,1,dots,n}=i n f{f^(')(x_(i))+|x-x_(i)|:i=0,1,dots,n},x in[a,b]f, F(x)=\sup \left\{f\left(x_{i}\right)-\left|x-x_{i}\right|: i=0,1, \ldots, n\right\} =\inf \left\{f^{\prime}\left(x_{i}\right)+\left|x-x_{i}\right|: i=0,1, \ldots, n\right\}, x \in[a, b], is an extreme point of B(Lip_(0)[a,b])B\left(\operatorname{Lip}_{0}[a, b]\right).
4. Best approximation of Lipschitz functions.
Let
M={x_(0),x_(1),dots,x_(n)}quad,quad a <= x_(0) < x_(1) < dots < x_(n) <= bM=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \quad, \quad a \leq x_{0}<x_{1}<\ldots<x_{n} \leq b
and let
(17) quadLip_(0)[a,b]={f,f:[a,b]rarr R,f:}\quad \operatorname{Lip}_{0}[a, b]=\left\{f, f:[a, b] \rightarrow R, f\right. is Lipschitz and {:f(x_(0))=0}\left.f\left(x_{0}\right)=0\right\}. Let also
M^(_|_)={f in Lip_(o)[a,b];f|_(M)=0}M^{\perp}=\left\{f \in \operatorname{Li} p_{o}[a, b] ;\left.f\right|_{M}=0\right\}
Since every function f inLip_(0)Mf \in \operatorname{Lip}_{0} M has at least one extension F inLip_(0)[a,b]F \in \operatorname{Lip}_{0}[a, b] it follows that every function f inLip_(0)[a,b]f \in \operatorname{Lip}_{0}[a, b] has a best approximation (nearest point) in M^(_|_)M^{\perp}, i.e. there exists E_(0)inM^(_|_)\mathrm{E}_{0} \in \mathbb{M}^{\perp}. such that ||f-g_(0)||_(L)=i n f{||P-g||_(L):g inM^(_|_)}\left\|\mathrm{f}-\mathrm{g}_{0}\right\|_{\mathrm{L}}=\inf \left\{\|\mathrm{P}-\mathrm{g}\|_{\mathrm{L}}: g \in \mathbb{M}^{\perp}\right\}. It Was shown ( see [5] ) that g_(0)inM^(_|_)g_{0} \in M^{\perp} is an element of best approximation for f inLip_(0)[a,b]f \in \operatorname{Lip}_{0}[a, b] by elements from M^(_|_)M^{\perp} if and only if C_(0)=f-FC_{0}=f-F, for F in V(f)F \in V(f).
Taking into account the precedings results it follows :
4.1 THEOREIM. Let f in Lipp_(0)[a,b]f \in \operatorname{Lip} p_{0}[a, b] and M={x_(0),x_(1),dots,x_(n)}M=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, a <= x_(0) < x_(1) < dots < x_(n) <= ba \leqslant x_{0}<x_{1}<\ldots<x_{n} \leqslant b.
(a) If the relation (15) holds for an index k in{0,1,dots,n-1}k \in\{0,1, \ldots, n-1\} then all the best approximation elements for ff in M^(_|_)M^{\perp} vanish on the interval [x_(k),x_(k+1)]\left[\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}\right];
(b) If x_(0)=a,x_(n)=bx_{0}=a, x_{n}=b and ||f||_(L)=|[x_(0),x_(n);f]|\|f\|_{L}=\left|\left[x_{0}, x_{n} ; f\right]\right|, then 0 is the only best approximation element for ff in MM;
(c) If ||f||_(L)=|[x_(k),x_(k+1);f]|\|f\|_{L}=\left|\left[x_{k}, x_{k+1} ; f\right]\right|, for all k=0,1,dots,n-1k=0,1, \ldots, n-1, then 0 is the only best approximation olement for it in u^(_|_)u^{\perp}.
Proof. Assertion (a) follows from Corollary 2.3 , taking into account that the best approximation elements g_(0)g_{0} for ff in ii ^(_|_){ }^{\perp} have the form
g_(0)=I-E quad,quad F inV(P)g_{0}=I-E \quad, \quad F \in \mathbb{V}(P)
Assertions (b) and (c) follow from Corollary 2.4 .
4.2 Remark. Let MM be the set (8) and let
Lip_(0)[a,b]={f:[a,b]rarr R,f(x_(0))=0,f" is Lipschitz "}\operatorname{Lip}_{0}[a, b]=\left\{f:[a, b] \rightarrow R, f\left(x_{0}\right)=0, f \text { is Lipschitz }\right\}
If f!in W(f)f \notin W(f), then, by Theorem 2.1, it follws
If, further
(i) f(x) <= F_(1)(x)quad,quad x in[a,b]f(x) \leqslant F_{1}(x) \quad, \quad x \in[a, b]
where F_(1)F_{1} is given by (5) (with A=MA=M ), then all bect approximation elements of ff in M^(_|_)M^{\perp} are non-positive, and if
{:(ii)f(x) >= F_(2)(x)quad","quad x in[a","b]:}\begin{equation*}
f(x) \geqslant F_{2}(x) \quad, \quad x \in[a, b] \tag{ii}
\end{equation*}
with F_(2)F_{2} given by (6) (with A=MA=M ), then all the elements of best approximation for ff in M^(_|_)M^{\perp} are non-negative.
Obviously, there exist functions f inLip_(o)[a,b]f \in \operatorname{Lip}_{o}[a, b] verifying the conditions (i) and (ii) and which are not fixed points of WW.
For example, takin _(G)g inLip_(o)[a,b]{ }_{G} g \in \operatorname{Lip}_{o}[a, b], the function
f(x)=s u p{g(x_(k))-L_(i)|x-x_(k)|:x_(k)in M,k=0,1,dots,n}f(x)=\sup \left\{g\left(x_{k}\right)-L_{i}\left|x-x_{k}\right|: x_{k} \in M, k=0,1, \ldots, n\right\}
with L > ||g|_(M)||_(L)L>\left\|\left.g\right|_{\mathbb{M}}\right\|_{L}, verifies the condition (i) and the function
with L > ||B|_(||)||_(I)L>\left\|\left.B\right|_{\|}\right\|_{I} verifies the condition h(x) <= I_(2)(x)h(x) \leqslant I_{2}(x), x in[a,b]x \in[a, b] (i.e. condition (ii) ) .
1 COBZAS, S. , MUSTATA, C. , Norm Preserving Extension of Convex Iipschitz Functions, J.A.T. 24 (1978), 236 - 244.
2 DUTHAS, O.B. , Ohebyshev approximation with a null space , Proc. Amer. Math. Soc. 41 (1973), 557-558.
3 JOLINSON, J. A., Banach Spaces of Lipschitz Functions and Vector-Valued Lipschitz Functions, Trans. Amer. Math. Soc. 148 (1970), 147-169.
4 Wic SHATL, E.J., Extension of range of functions, Bull. Amer. Jath. Soc. 40 (1934), 837-842.
5 USTATA, C., Best Approximation and Unique Intiension of Lipsch itz Functions , J.A.T. 19 (1977), 222-230.
6 R.OI, A.I., Extreme Points and Iinear Isometries of Banach Space of Lijschitz Functions, Canad. J. of Math. 20 (1968), 1150-1164.
7 SIMGR, I., Cea nai bună aproximare in spatii vectoriale normate prin elemente din subspatii vectoriale, Edit.
Acad. R.S. România, Bucureşti, 1967 .
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, On the extension of Lipschitz…
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical analysis, Romanian Academy, Romania Keywords? Paper coordinatesC. Mustăţa, On the uniqueness of…
Abstract AuthorsCostică Mustăţa Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania Keywords? Paper coordinatesC. Mustăţa, On the exactity of the error…
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania C. Iancu KeywordsPaper coordinatesC. Mustăţa, C. Iancu, Error…
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, An application of a theorem…
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, Extension of Hölder functions and…
Abstract AuthorsCostica Mustata Institutul de Calcul KeywordsPaper coordinatesC. Mustăţa, On a problem of extremum, ”Babeş-Bolyai” Univ., Research Seminars, Seminar on…
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, Selections associated to McShane’s extension…