Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania
Keywords
Paper coordinates
C. Mustăţa, Uniqueness of extension of semi-Lipschitz functions on quasi-metric spaces, Bul. Ştiinţ. Univ. Baia Mare, Seria B, Fascicola matematică-informatică, 16 (2000) no. 2, pp. 207-212.
[1] Cobzas, S., Mustata, C., Norm Preserving Extension of Convex Lipschitz Functions , J. Approx. Theory, 24 (1978), 555-564.
[2] Fletcher, P., Lindgren, W.F., Quasi-Uniform Spaces, Dekker, York, 1982.
[3] McShane, J. A,, Extension of range of functions, Bull. Amer. Math. Soc. 40(1934) 837-842.
[4] Mustata, C., Best Approximation and Unique Extension of Lipschitz Functions, J. Approx. Theory 19(1977), 222-230.
[5] Mustata, C., On the Extension of Semi-Lipschitz Functions on Quasi-Metric Space (to appear).
[6] Romaguera, S., Sanchis, M., Semi-Lipschitz Functions and Best Approximation in Quasi-Metric Spaces, J. Approx. Theory 103 (2000) 292-301.
[7] Wells, J.H., Williams, L.R., Embeddings and Extensions in Analysis, Springer- Verlag, Berlin 1975.
for all x,y,z in Xx, y, z \in X. We call dd a quasi-metric on XX and the pair ( X,dX, d ), a quasimetric space. Remark that the main difference with respect to a metric is the symmetry condition, d(x,y)=d(y,x)d(x, y)=d(y, x), which is not satisfied by a quasimetric.
The conjugate of a quasi-metric dd,denoted by d^(-1)d^{-1} is defined by
for all x,y in Xx, y \in X. Obviously, that the mapping d^(s):X xx X rarr[0,oo)d^{s}: X \times X \rightarrow[0, \infty) defined by
{:(2)d^(s)(x","y)=max{d(x,y),d^(-1)(x,y)}","x","y in X:}\begin{equation*}
d^{s}(x, y)=\max \left\{d(x, y), d^{-1}(x, y)\right\}, x, y \in X \tag{2}
\end{equation*}
is a metric on XX, i.e. d^(s)d^{s} satisfies the conditions (i), (ii) and the symmetry condition:
{:(iii)d^(s)(x","y)=d^(s)(y","x)","quad x","y in X:}\begin{equation*}
d^{s}(x, y)=d^{s}(y, x), \quad x, y \in X \tag{iii}
\end{equation*}
A function f:X rarrRf: X \rightarrow \mathbb{R},defined on a quasi-metric space ( X,dX, d ) is called semi-Lipschitz provided there exists a number K >= 0K \geq 0 such that
{:(3)f(x)-f(y) <= Kd(x","y):}\begin{equation*}
f(x)-f(y) \leq K d(x, y) \tag{3}
\end{equation*}
for all x,y in Xx, y \in X. A function f:X rarrRf: X \rightarrow \mathbb{R} is called <= _(d^(-))\leq_{d^{-}}increasing if
for all x,y in Xx, y \in X.
The definition of <= _(d)\leq_{d} - increasing function f:X rarrRf: X \rightarrow \mathbb{R} is consistent for T_(0)T_{0} - separated quasi-metric space (X,d)(X, d) (see [6]). In this note the quasi-metric space ( X.dX . d ) is T_(1)T_{1} - separated (see the condition (i) and (ii)).
Since d(x,y)=0Longleftrightarrow x=yd(x, y)=0 \Longleftrightarrow x=y, it follows that f(x) <= f(y)f(x) \leq f(y) for any function f:X rarrRf: X \rightarrow \mathbb{R} i.e. any real - valued function on a quasi - metric space XX is <= _(d)\leq_{d} - increasing.
Theorem 1 Let f:X rarrRf: X \rightarrow \mathbb{R} be such that
{:(4)||f||_(d)=s u p{((f(x)-f(y))vv0)/(d(x,y)):x,y in X,d(x,y) > 0} < oo:}\begin{equation*}
\|f\|_{d}=\sup \left\{\frac{(f(x)-f(y)) \vee 0}{d(x, y)}: x, y \in X, d(x, y)>0\right\}<\infty \tag{4}
\end{equation*}
Then ff satisfies the inequality
{:(5)f(x)-f(y) <= ||f||_(d)*d(x","y)","AA x","y in X:}\begin{equation*}
f(x)-f(y) \leq\|f\|_{d} \cdot d(x, y), \forall x, y \in X \tag{5}
\end{equation*}
and ||f||_(d)\|f\|_{d} is the smallest constant for which the inequality (3) holds.
P roof. nce ff is <= _(d)\leq_{d} - increasing (see (3a)) it follows that f(x)-f(y) > 0f(x)-f(y)>0 implies d(x,y) > 0d(x, y)>0. But then
(f(x)-f(y))/(d(x,y)) > 0" and "||f||_(d)=s u p_(d(x,y) > 0)((f(x)-f(y))vv0)/(d(x,y)) >= (f(x)-f(y)/(d(x,y))\frac{f(x)-f(y)}{d(x, y)}>0 \text { and }\|f\|_{d}=\sup _{d(x, y)>0} \frac{(f(x)-f(y)) \vee 0}{d(x, y)} \geq \frac{f(x)-f(y}{d(x, y)}
implying f(x)-f(y) <= ||f||_(d)*d(x,y)f(x)-f(y) \leq\|f\|_{d} \cdot d(x, y).
Let now K >= 0K \geq 0 be such that
f(x)-f(y) <= K*d(x,y)f(x)-f(y) \leq K \cdot d(x, y)
for all x,y in Xx, y \in X. Then ff is <= _(d)\leq_{d} - increasing and
((f(x)-f(y))vv0)/(d(x,y))=(f(x)-f(y))/(d(x,y)) <= K quad" if "quad f(x)-f(y) > 0\frac{(f(x)-f(y)) \vee 0}{d(x, y)}=\frac{f(x)-f(y)}{d(x, y)} \leq K \quad \text { if } \quad f(x)-f(y)>0
and
((f(x)-f(y))vv0)/(d(x,y))=0 <= K quad" if "quad f(x)-f(y) <= 0.\frac{(f(x)-f(y)) \vee 0}{d(x, y)}=0 \leq K \quad \text { if } \quad f(x)-f(y) \leq 0 .
Consequently, ||f||_(d) <= K\|f\|_{d} \leq K.
Denoting by SLip XX the set of all real - valued semi - Lipschitz functions defined on a quasi - metric space ( X,dX, d ) we have
Let Y sub X,Y!=O/Y \subset X, Y \neq \emptyset, where (X,d)(X, d) is a quasi - metric space. It follows that ( Y,dY, d ) is a quasi - metric space, too, and let's denote by SLip YY the set of all semi - Lipschitz functions on YY.
The following extension problem arises naturally: for f in SLipYf \in S L i p Y find F inF \in SLip XX such that
{:(7)F|_(Y)=f" and "||F||_(d)=||f||_(d):}\begin{equation*}
\left.F\right|_{Y}=f \text { and }\|F\|_{d}=\|f\|_{d} \tag{7}
\end{equation*}
The answer is affirmative. In [5] it was shown that the functions
{:(8)F(x)=i n f_(y in Y)[f(y)+||f||_(d)*d(x,y)]","x in X:}\begin{equation*}
F(x)=\inf _{y \in Y}\left[f(y)+\|f\|_{d} \cdot d(x, y)\right], x \in X \tag{8}
\end{equation*}
{:(9)G(x)=s u p_(y in Y)[f(y)-||f||_(d)*d^(-1)(x,y)]","x in X:}\begin{equation*}
G(x)=\sup _{y \in Y}\left[f(y)-\|f\|_{d} \cdot d^{-1}(x, y)\right], x \in X \tag{9}
\end{equation*}
satisfy the equalities
F|_(Y)=G|_(Y)=f quad" and "quad||F||_(d)=||G||_(d)=||f||_(d).\left.F\right|_{Y}=\left.G\right|_{Y}=f \quad \text { and } \quad\|F\|_{d}=\|G\|_{d}=\|f\|_{d} .
In other words, for any f in SLipYf \in S L i p Y the set
{:(10)E_(Y)^(d)(f):={H in S Lip X:H|_(Y)=f quad" and "quad||H||_(d)=||f||_(d)}:}\begin{equation*}
E_{Y}^{d}(f):=\left\{H \in S \operatorname{Lip} X:\left.H\right|_{Y}=f \quad \text { and } \quad\|H\|_{d}=\|f\|_{d}\right\} \tag{10}
\end{equation*}
of all extensions of ff which preserve the smallest Lipschitz constant is nonvoid.
Concerning the unicity of the extension ( cardE_(Y)^(d)(f)=1\operatorname{card} E_{Y}^{d}(f)=1 ) one can prove:
Theorem 2 Let (X,d)(X, d) be a quasi-metric space, Y sub XY \subset X and f in SLipYf \in S L i p Y. Then
a) For every H inE_(Y)^(d)(f)H \in E_{Y}^{d}(f) the following inequalities hold:
{:(11)G(x) <= H(x) <= F(x)","quad x in X:}\begin{equation*}
G(x) \leq H(x) \leq F(x), \quad x \in X \tag{11}
\end{equation*}
where the functions F,GF, G are defined by (8), (9);
b) card E_(Y)^(d)(f)=1E_{Y}^{d}(f)=1 if and only if
{:(12)s u p_(y in Y)[f(y)-||f||_(d)d^(-1)(x,y)]=i n f_(y in Y)[f(y)+||f||_(d)d(x,y)]:}\begin{equation*}
\sup _{y \in Y}\left[f(y)-\|f\|_{d} d^{-1}(x, y)\right]=\inf _{y \in Y}\left[f(y)+\|f\|_{d} d(x, y)\right] \tag{12}
\end{equation*}
for all x in Xx \in X.
P roof. t H inE_(Y)^(d)(f)H \in E_{Y}^{d}(f). Then we have for every x in Xx \in X and y in Yy \in Y :
Taking the supremum with respect to y in Yy \in Y one obtains
H(x) >= G(x),quad x in X.H(x) \geq G(x), \quad x \in X .
The assertion b) is a direct consequence of the inequalities (11).
Remark. 1^(0)1^{0}. If the function f:X rarrRf: X \rightarrow \mathbb{R} is constant on XX then ||f||_(d)=0\|f\|_{d}=0, and the equality (12) holds.
Consider on R\mathbb{R} de quasi-metric
d(x,y)={[x-y",",x >= y],[0",",x < y]:}d(x, y)=\left\{\begin{array}{cc}
x-y, & x \geq y \\
0, & x<y
\end{array}\right.
and let Y=[0,1]Y=[0,1] and f(y)=2y,y in Yf(y)=2 y, y \in Y.Then ||f||_(d)=2\|f\|_{d}=2 and the extremal extensions F,GF, \mathrm{G} are
F(x)={[2,x < 0],[2x,x >= 0]quad" and "quad G(x)={[2x,x <= 1],[0,x > 1]:}F(x)=\left\{\begin{array}{cc}
2 & x<0 \\
2 x & x \geq 0
\end{array} \quad \text { and } \quad G(x)=\left\{\begin{array}{cc}
2 x & x \leq 1 \\
0 & x>1
\end{array}\right.\right.
which are distinct. 2^(0)2^{0}. By Theorem 2, if f in SLipYf \in S L i p Y has a unique extension then the equality (12) holds and, since
{:[i n f_(y in Y)[f(y)+||f||_(d)*d(x,y)] >= i n f_(y in Y)f(y)+||f||_(d)*d(x","Y)],[s u p_(y in Y)[f(y)-||f||_(d)*d^(-1)(x,y)] <= s u p_(y in Y)f(y)-||f||_(d)*d^(-1)(x","Y)]:}\begin{aligned}
\inf _{y \in Y}\left[f(y)+\|f\|_{d} \cdot d(x, y)\right] & \geq \inf _{y \in Y} f(y)+\|f\|_{d} \cdot d(x, Y) \\
\sup _{y \in Y}\left[f(y)-\|f\|_{d} \cdot d^{-1}(x, y)\right] & \leq \sup _{y \in Y} f(y)-\|f\|_{d} \cdot d^{-1}(x, Y)
\end{aligned}
where
d(x,Y)=i n f{d(x,y):y in Y}d(x, Y)=\inf \{d(x, y): y \in Y\}
and
d^(-1)(x,Y)=i n f{d(y,x):y in Y}d^{-1}(x, Y)=\inf \{d(y, x): y \in Y\}
we obtain the inequality
{:(13)d(x","Y)+d^(-1)(x","Y) <= (1)/(||f||_(d))(s u p_(y in Y)f(y)-i n f_(y in Y)f(y)):}\begin{equation*}
d(x, Y)+d^{-1}(x, Y) \leq \frac{1}{\|f\|_{d}}\left(\sup _{y \in Y} f(y)-\inf _{y \in Y} f(y)\right) \tag{13}
\end{equation*}
Theorem 3 Let (X,d)(X, d) be a quasi-metric space and Y sub X,Y!=XY \subset X, Y \neq X, containing at least one cluster point. If each function f in SLipYf \in S L i p Y has a unique extension then bar(Y)=X\bar{Y}=X. P\mathbf{P} roof. ty_(0)in Y\mathrm{t} y_{0} \in Y be a cluster point of the set YY and let y_(n)in Y\\{y_(0)}y_{n} \in Y \backslash\left\{y_{0}\right\}, n=1,2dotsn=1,2 \ldots, be such that lim_(n rarr oo)d(y_(n),y_(0))=0\lim _{n \rightarrow \infty} d\left(y_{n}, y_{0}\right)=0.
Claim: There exists x_(0)in Xx_{0} \in X such that d(x_(0),y_(0)) > 0d\left(x_{0}, y_{0}\right)>0 and d(x_(0),y_(n)) > 0d\left(x_{0}, y_{n}\right)>0, n=1,2,dotsn=1,2, \ldots.
Indeed, if contrary, then for every x in X,d(x,y_(0))=0x \in X, d\left(x, y_{0}\right)=0 or d(x,y_(n))=0d\left(x, y_{n}\right)=0 for all n inNn \in \mathbb{N}.In the first case x=y_(0)in Yx=y_{0} \in Y and in the second x=y_(n)in Yx=y_{n} \in Y.It follows Y=XY=X, a contradiction.
Consider the function f:X rarrRf: X \rightarrow \mathbb{R} defined by
f(x)=d(x,y_(0))-d(x_(0),y_(0)),x in Xf(x)=d\left(x, y_{0}\right)-d\left(x_{0}, y_{0}\right), x \in X
for n rarr oon \rightarrow \infty,showing that YY is dense in XX, with respect to the quasi-metric dd and with respect to d^(-1)d^{-1}, as well.
References
[1] Cobzas, S., Mustăta, C., Norm Preserving Extension of Convex Lipschitz Functions, J.A.T. 24(1978), 555-564.
[2] Fletcher, P., Lindgren, W.F., "Quasi-Uniform Spaces" Dekken, New York, 1982.
[3] McShane, J.A., Extension of range of functions, Bull.Amer.Math.Soc. 40(1934) 837-842.
[4] Mustăţa, C., Best Approximation and Unique Extension of Lipschitz Functions, J.A.T. 19(1977), 222-230.
[5] Mustăţa, C., On the Extension of Semi-Lipschitz Functions on QuasiMetric Space (to appear).
[6] Romaguera, S., Sanchis, M., Semi-Lipschitz Functions and Best Approximation in Quasi-Metric Spaces, J.A.T. 103 (2000) 292-301.
[7] Wells, J.H., Williams, L.R., Embeddings and Extensions in Analysis, Springer-Verlag, Berlin 1975.
Received 19.10.2000
"T. Popoviciu" Institute of Numerical Analysis str. Gh. Bilaşcu nr. 37
C.P. 68, O.P. 1
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, Uniqueness of extension of semi-Lipschitz…
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, Extension of starshaped bounded semi-Lipschitz…
Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania Keywords? Paper coordinatesC. Mustăţa, Extension and approximation of…
Abstract In this note we are concerned with the characterization of the elements of \(\varepsilon\)-best approximation (\varepsilon\)-nearest points) in a…