Posts by Flavius Patrulescu

Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and an obstacle, the so-called foundation. The contact is frictionless and is modeled with a new and nonstandard condition which involves both normal compliance, unilateral constraint and memory effects. We derive a variational formulation of the problem which is the form of a history-dependent variational inequality for the displacement field.

Then, using a recent result obtained by Sofonea and Matei, we prove the unique weak solvability of the problem. Next, we study the continuous dependence of the weak solution with respect the data and prove a first convergence result. Finally, we prove that the weak solution of the problem represents the limit of the weak solution of a contact problem with normal compliance and memory term, as the stiffness coefficient of the foundation converges to infinity.

Authors

Mircea Sofonea
Laboratoire de Mathématiques et Physique, Université de Perpignan

Flavius Patrulescu
Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy

Keywords

viscoelastic material; frictionless contact; unilateral constraint; memory term; history-dependent variational inequality; weak solution

Cite this paper as:

M. Sofonea, F. Pătrulescu, Analysis of a history-dependent frictionless contact problem, Math. Mech. Solids, 18 (2013) no.4, pp. 409-430.

PDF

About this paper

Journal

Mathematics and Mechanics of Solids

Publisher Name

SAGE Publications, Thousand Oaks, CA

Print ISSN

1081-2865

Online ISSN

1741-3028

MR

3179460

ZBL

?

Paper (preprint) in HTML form

Analysis of a History-dependent Frictionless Contact Problem

M. Sofonea 1 F. Pătrulescu 2,
1 Laboratoire de Mathématiques et Physique
Université de Perpignan, 52 Avenue de Paul Alduy, 66860 Perpignan, France
2 Tiberiu Popoviciu Institute of Numerical Analysis
P.O. Box 68-1, 400110 Cluj-Napoca, Romania
Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and an obstacle, the so-called foundation. The contact is frictionless and is modelled with a new and nonstandard condition which involves both normal compliance, unilateral constraint and memory effects. We derive a variational of the problem which is the form of a history history-dependent variational inequality for the displacement field. Then, using a recent result obtained in [26], we prove the unique weak solvability of the problem. Next, we study the continuous dependence of the weak solution with respect the data and prove a first convergence result. Finally, we prove that the weak solution of the problem converges to the weak solution of a contact problem with normal compliance and memory term, as the stiffness coefficient of the foundation converges to infinity.

2010 Mathematics Subject Classification : 74M15, 74G25, 74G30, 49J40, 35Q74.
Keywords: viscoelastic material, frictionless contact, unilateral constraint, memory term, history-depdendent variational inequality, weak solution.

1 Introduction

Phenomena of contact between deformable bodies abound in industry and everyday life. Contact of braking pads with wheels, tires with roads, pistons with skirts are just few simple examples. Common industrial processes such as metal forming, metal extrusion, involve contact evolutions. Owing to their inherent complexity, contact
phenomena lead to mathematical models expressed in terms of strongly nonlinear elliptic or evolutionary boundary value problems.

An early attempt to study frictional contact problems within the framework of variational inequalities was made in [3]. An excellent reference on analysis and numerical approximations of contact problems involving elastic materials with or without friction is [7]. The variational analysis of various contact problems, including existence and uniqueness results, can be found in the monographs [4, 6, 15, 22. The state of the art in the field can also be found in the proceedings [10, 18, 29] and in the special issue [21], as well.

To construct a mathematical model which describes a specific contact process we need to precise the material’s behavior and the contact conditions, among others. In this paper we assume that the material is viscoelastic and we describe its behavior with a constitutive law with long memory of the form

𝝈(t)=𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s))𝑑s\boldsymbol{\sigma}(t)=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds (1.1)

Here 𝒖\boldsymbol{u} denotes the displacement field, 𝝈\boldsymbol{\sigma} represents the stress, 𝜺(𝒖)\boldsymbol{\varepsilon}(\boldsymbol{u}) is the linearized strain tensor and, finally, 𝒜\mathcal{A} and \mathcal{B} are the elasticity operator and the relaxation tensor, respectively. Results and mechanical interpretations in the study of viscoelastic materials of the form (1.1) can be found in [3, 17, 28, for instance. The analysis of various contact problems which such kind of materials was provided in [19, 20, 24. There, the unique solvability of the problems was proved by using existence and uniqueness results for evolutionary variational inequalities involving a Volterra-type integral term; fully discrete schemes for the numerical approximation of the models were considered and error estimates were derived; finally, the schemes were implemented on a computer code and numerical simulations were presented. The analysis of models of antiplane frictional contact problems with viscoelastic materials of the form (1.1), including existence, uniqueness and convergence results, was performed in 25.

We turn now to describe some representative contact conditions used in the literature and, to this end, we denote by uνu_{\nu} and σν\sigma_{\nu} the normal displacement and the normal stress on the contact surface, respectively.

The so-called normal compliance contact condition describes a deformable foundation. It assigns a reactive normal pressure that depends on the interpenetration of the asperities on the body’s surface and those of the foundation. A general expression for this condition is

σν=p(uν)-\sigma_{\nu}=p\left(u_{\nu}\right) (1.2)

where pp is a nonnegative prescribed function which vanishes for negative argument. Indeed, when uν<0u_{\nu}<0 there is no contact and the normal pressure vanishes. When there is contact then uνu_{\nu} is positive and represents a measure of the interpenetration of the asperities. Then, condition (1.2) shows that the foundation exerts a pressure on the body, which depends on the penetration.

A commonly used example of the normal compliance function pp is

p(r)=cνr+p(r)=c_{\nu}r^{+} (1.3)

Here the constant cν>0c_{\nu}>0 is the surface stiffness coefficient and r+=max{r,0}r^{+}=\max\{r,0\} denotes the positive part of rr. A second example is provided by the truncated normal compliance function

p(r)={cνr+if rα,cνα if r>α,p(r)=\begin{cases}c_{\nu}r^{+}&\text{if }r\leq\alpha,\\ c_{\nu}\alpha&\text{ if }r>\alpha,\end{cases}

where α\alpha is a positive coefficient related to the wear and hardness of the surface. In this case the contact condition (1.2) means that when the penetration is too large, i.e., when it exceeds α\alpha, the obstacle offers no additional resistance to penetration.

The normal compliance contact condition was first introduced in [14] and since then used in many publications, see, e.g., [7, 8, 9, 11] and references therein. The term normal compliance was first introduced in [8, 9]. An idealization of the normal compliance, which is used often in engineering literature, and can also be found in mathematical publications, is the Signorini contact condition, in which the foundation is assumed to be perfectly rigid. It is obtained, formally, from the normal compliance condition (1.2), (1.3), in the limit when the surface stiffness coefficient becomes infinite, i.e., cνc_{\nu}\rightarrow\infty, and thus interpenetration is not allowed. This leads to the idea of regarding contact with a rigid support as a limiting case of contact with deformable support, whose resistance to compression increases. The Signorini contact condition can be stated in the following complementarity form:

uν0,σν0,σνuν=0u_{\nu}\leq 0,\quad\sigma_{\nu}\leq 0,\quad\sigma_{\nu}u_{\nu}=0 (1.5)

This condition was first introduced in 23 and then used in many papers, see, e.g., [22] for further details and references. Assume now that there is an initial gap g>0g>0 between the body and the foundation. Then the Signorini contact condition in a form with a gap function is given by

uνg,σν0,σν(uνg)=0u_{\nu}\leq g,\quad\sigma_{\nu}\leq 0,\quad\sigma_{\nu}\left(u_{\nu}-g\right)=0 (1.6)

In various situations the reaction of the foundation at the moment tt depends on the history of the penetration and, therefore, it cannot be determinate as a function of the current value uν(t)u_{\nu}(t). In this case one can assume that the normal stress satisfies a condition of the form

σν(t)=0tb(ts)uν+(s)𝑑s-\sigma_{\nu}(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds (1.7)

in which bb represents a given function, the so-called surface memory function. Contact conditions of the form (1.7) have a simple physical interpretation if there are no cycles of contact and separation during the time interval of interest. For instance, assume in what follows that bb is a positive function. Moreover, assume that in the time interval
[0;t][0;t] there is only penetration (i.e. uν(s)0u_{\nu}(s)\geq 0 for all s[0,t]s\in[0,t] ). Then (1.7) shows that the reaction of the foundation at tt is towards the body (since σν(t)0\sigma_{\nu}(t)\leq 0 ). Also, if in the time interval [0;t][0;t] there is separation (i.e. uν(s)<0u_{\nu}(s)<0 for all s[0,t]s\in[0,t] ) then there is no reaction at the moment tt (since σν(t)=0\sigma_{\nu}(t)=0 ). Now, assume a situation in which uνu_{\nu} is positive in time interval [0,t0]\left[0,t_{0}\right] and negative on the time interval [t0,t]\left[t_{0},t\right]. Then, following (1.7) we have

σν(t)=0t0b(ts)uν+(s)𝑑s-\sigma_{\nu}(t)=\int_{0}^{t_{0}}b(t-s)u_{\nu}^{+}(s)ds

since the integral on the remaining interval [t0,t]\left[t_{0},t\right] vanishes. Assume, in addition, that the support of the function bb is included in the interval [0,δ][0,\delta] with δ>0\delta>0. Two possibilities arise. First, if tt0>δt-t_{0}>\delta it follows that b(ts)=0b(t-s)=0 for all s[0,t0]s\in\left[0,t_{0}\right] and (1.7) shows the normal stress σν(t)\sigma_{\nu}(t) vanishes. Second, if tt0δt-t_{0}\leq\delta (1.7) implies that σν(t)0\sigma_{\nu}(t)\leq 0 i.e. a residual pression exists at the moment tt on the body’s surface. We interpret this as a memory effect in which the foundation prevents the separation, moves towards the body and exerts a pression on a short interval of time of length δ\delta. Various other mechanical interpretation of the condition (1.7) could be obtained if bb is assumed to be a negative function or if this condition is associated to the normal compliance condition (1.2), as shown in Section 3 below. Note that conditions of the form (1.7) were considered in [13] in the study of a lumped model with contact and friction.

In the present paper we study a quasistatic frictionless contact problem for viscoelastic materials of the form (1.1). The novelty consists in the fact that the contact condition we use describes a deformable foundation which becomes rigid when the penetration reaches a critical bound and which developes memory effects. This contact condition includes as particular cases both the normal compliance condition (1.2), the Signorini condition (1.6) and the history-dependent condition (1.7). Considering such condition leads to a new and nonstandard mathematical model which, in a variational formulation, is given by a history-dependent variational inequality for the displacement field. We prove the unique weak solvability of the problem then we establish two convergence results.

The rest of the paper is structured as follows. In Section 2 we present the notation we shall use as well as some preliminary material. In Section 3 we describe the model of the contact process. In Section 4 we list the assumptions on the data and derive the variational formulation of the problem. Then we state and prove our main existence and uniqueness result, Theorem 4.1. In Section 5 we state and prove our first converge result, Theorem 5.1. It states the continuous dependence of the solution with respect to the data. Finally, in Section 6 we state and prove our second converge result, Theorem 6.1. It states that the weak solution of the problem with normal compliance, memory term and unilateral constraint can be approached by the weak solution of a problem with normal compliance and memory term, as the stiffness coefficient of the foundation converges to infinity.

2 Notation and preliminaries

Everywhere in this paper we use the notation \mathbb{N}^{*} for the set of positive integers and +\mathbb{R}_{+}will represent the set of non negative real numbers, i.e. +=[0,+)\mathbb{R}_{+}=[0,+\infty). We denote by 𝕊d\mathbb{S}^{d} the space of second order symmetric tensors on d\mathbb{R}^{d} or, equivalently, the space of symmetric matrices of order dd. The inner product and norm on d\mathbb{R}^{d} and 𝕊d\mathbb{S}^{d} are defined by

𝒖𝒗=uivi,𝒗=(𝒗𝒗)12𝒖=(ui),𝒗=(vi)d𝝈𝝉=σijτij,𝝉=(𝝉𝝉)12𝝈=(σij),𝝉=(τij)𝕊d\begin{array}[]{lll}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u}=\left(u_{i}\right),\boldsymbol{v}=\left(v_{i}\right)\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma}=\left(\sigma_{ij}\right),\boldsymbol{\tau}=\left(\tau_{ij}\right)\in\mathbb{S}^{d}\end{array}

Let Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) be a bounded domain with Lipschitz continuous boundary Γ\Gamma and let Γ1,Γ2\Gamma_{1},\Gamma_{2}, and Γ3\Gamma_{3} be three measurable parts of Γ\Gamma such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. We use the notation 𝒙=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in Ω\Omega and we denote by 𝝂=(νi)\boldsymbol{\nu}=\left(\nu_{i}\right) the outward unit normal at Γ\Gamma. Here and below the indices i,j,k,li,j,k,l run between 1 and dd and, unless stated otherwise, the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=ui/xju_{i,j}=\partial u_{i}/\partial x_{j}. We use standard notation for the Lebesgue and Sobolev spaces associated to Ω\Omega and Γ\Gamma. In particular, we recall that the inner products on the Hilbert spaces L2(Ω)dL^{2}(\Omega)^{d} and L2(Γ3)dL^{2}\left(\Gamma_{3}\right)^{d} are given by

(𝒖,𝒗)L2(Ω)d=Ω𝒖𝒗𝑑x,(𝒖,𝒗)L2(Γ2)d=Γ2𝒖𝒗𝑑a(\boldsymbol{u},\boldsymbol{v})_{L^{2}(\Omega)^{d}}=\int_{\Omega}\boldsymbol{u}\cdot\boldsymbol{v}dx,\quad(\boldsymbol{u},\boldsymbol{v})_{L^{2}\left(\Gamma_{2}\right)^{d}}=\int_{\Gamma_{2}}\boldsymbol{u}\cdot\boldsymbol{v}da

and the associated norms will be denoted by L2(Ω)d\|\cdot\|_{L^{2}(\Omega)^{d}} and L2(Γ2)d\|\cdot\|_{L^{2}\left(\Gamma_{2}\right)^{d}}, respectively. Moreover, we consider the spaces

V\displaystyle V ={𝒗H1(Ω)d:𝒗=𝟎 on Γ1}\displaystyle=\left\{\boldsymbol{v}\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\}
Q\displaystyle Q ={𝝉=(τij)L2(Ω)d:τij=τji}\displaystyle=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d}:\tau_{ij}=\tau_{ji}\right\}
Q1\displaystyle Q_{1} ={𝝉=(τij)Q:τij,jL2(Ω)}\displaystyle=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in Q:\tau_{ij,j}\in L^{2}(\Omega)\right\}

These are real Hilbert spaces endowed with the inner products

(𝒖,𝒗)V\displaystyle(\boldsymbol{u},\boldsymbol{v})_{V} =Ω𝜺(𝒖)𝜺(𝒗)𝑑x\displaystyle=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx
(𝝈,𝝉)Q\displaystyle(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q} =Ω𝝈𝝉𝑑x\displaystyle=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx
(𝝈,𝝉)Q1\displaystyle(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q_{1}} =Ω𝝈𝝉𝑑x+ΩDiv𝝈Div𝝉dx\displaystyle=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\operatorname{Div}\boldsymbol{\tau}dx

and the associated norms V,Q\|\cdot\|_{V},\|\cdot\|_{Q} and Q1\|\cdot\|_{Q_{1}}, respectively. Here 𝜺\boldsymbol{\varepsilon} and Div are the deformation and divergence operators given by

𝜺(𝒗)\displaystyle\boldsymbol{\varepsilon}(\boldsymbol{v}) =(εij(𝒗)),εij(𝒗)=12(vi,j+vj,i)𝒗H1(Ω)d\displaystyle=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}
Div𝝉\displaystyle\operatorname{Div}\boldsymbol{\tau} =(τij,j)𝝉Q1\displaystyle=\left(\tau_{ij,j}\right)\quad\forall\boldsymbol{\tau}\in Q_{1}

Completeness of the space ( V,VV,\|\cdot\|_{V} ) follows from the assumption meas (Γ1)>0\left(\Gamma_{1}\right)>0, which allows the use of Korn’s inequality.

For an element 𝒗V\boldsymbol{v}\in V we still write 𝒗\boldsymbol{v} for the trace of VV and we denote by vνv_{\nu} and 𝒗τ\boldsymbol{v}_{\tau} the normal and tangential components of 𝒗\boldsymbol{v} on Γ\Gamma given by vν=𝒗𝝂,𝒗τ=𝒗vν𝝂v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{\nu},\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{\nu}. By the Sobolev trace theorem, there exists a positive constant c0c_{0}, depending on Ω\Omega, Γ1\Gamma_{1}, and Γ3\Gamma_{3}, such that

𝒗L2(Γ3)dc0𝒗V𝒗V\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V (2.1)

For an regular function 𝝈:ΩΓ𝕊d\boldsymbol{\sigma}:\Omega\cup\Gamma\rightarrow\mathbb{S}^{d} we denote by σν\sigma_{\nu} and 𝝈τ\boldsymbol{\sigma}_{\tau} the normal and the tangential components of the vector 𝝈𝝂\boldsymbol{\sigma}\boldsymbol{\nu} on Γ\Gamma, respectively, and we recall that σν=𝝈𝝂𝝂,𝝈τ=𝝈σν𝝂\sigma_{\nu}=\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{\nu},\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}-\sigma_{\nu}\boldsymbol{\nu}. Moreover, the following Green’s formula holds:

Ω𝝈𝜺(𝒗)𝑑x+ΩDiv𝝈𝒗dx=Γ𝝈𝝂𝒗𝑑a𝒗V\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V (2.2)

Finally, we denote by 𝐐\mathbf{Q}_{\infty} the space of fourth order tensor fields given by

𝐐={=(ijkl)ijkl=jikl=klijL(Ω),1i,j,k,ld}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right)\mid\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

We note that 𝐐\mathbf{Q}_{\infty} is a real Banach space with the norm

𝐐=0i,j,k,ldijklL(Ω)\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\sum_{0\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}

Moreover, a simple calculation shows that

𝝉Qd𝐐𝝉Q𝐐,𝝉Q\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q (2.3)

For each Banach space XX we use the notation C(+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuously functions defined on +\mathbb{R}_{+}with values on XX. It is well known that C(+;X)C\left(\mathbb{R}_{+};X\right) can be organized in a canonical way as a Fréchet space, i.e. as a complete metric space in which the corresponding topology is induced by a countable family of seminorms. Details can be found in 22 and [12], for instance. Here we restrict ourseleves to recall that the convergence of a sequence (xm)m\left(x_{m}\right)_{m} to the element xx, in the space C(+;X)C\left(\mathbb{R}_{+};X\right), can be described as follows:

{xmx in C(+;X) as m if and only if maxr[0,n]xm(r)x(r)X0 as m, for all n\left\{\begin{array}[]{l}x_{m}\rightarrow x\quad\text{ in }C\left(\mathbb{R}_{+};X\right)\text{ as }m\rightarrow\infty\text{ if and only if }\\ \max_{r\in[0,n]}\left\|x_{m}(r)-x(r)\right\|_{X}\rightarrow 0\text{ as }m\rightarrow\infty,\text{ for all }n\in\mathbb{N}^{*}\end{array}\right.

Equivalence (2.4) will be used several times in Section 5 of the paper.
Consider now a real Hilbert space XX with inner product (,)X(\cdot,\cdot)_{X} and associated norm X\|\cdot\|_{X}. Also, assume given a set KXK\subset X, the operators A:KX,𝒮A:K\rightarrow X,\mathcal{S} : C(+;X)C(+;X)C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};X\right) and a function f:+Xf:\mathbb{R}_{+}\rightarrow X such that:
KK is a closed, convex, nonempty subset of XX.

{ (a) There exists m>0 such that (Au1Au2,u1u2)Xmu1u2X2u1,u2K. (b) There exists L>0 such that Au1Au2XLu1u2Xu1,u2K.{ For every n there exists rn>0 such that 𝒮u1(t)𝒮u2(t)Yrn0tu1(s)u2(s)X𝑑su1,u2C(+;X),t[0,n]fC(+;X)\displaystyle\left\{\begin{array}[]{l}\text{ (a) There exists }m>0\text{ such that }\\ \left(Au_{1}-Au_{2},u_{1}-u_{2}\right)_{X}\geq m\left\|u_{1}-u_{2}\right\|_{X}^{2}\quad\forall u_{1},u_{2}\in K.\\ \text{ (b) There exists }L>0\text{ such that }\\ \left\|Au_{1}-Au_{2}\right\|_{X}\leq L\left\|u_{1}-u_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in K.\\ \left\{\begin{array}[]{l}\text{ For every }n\in\mathbb{N}^{*}\text{ there exists }r_{n}>0\text{ such that }\\ \left\|\mathcal{S}u_{1}(t)-\mathcal{S}u_{2}(t)\right\|_{Y}\leq r_{n}\int_{0}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|_{X}ds\\ \forall u_{1},u_{2}\in C\left(\mathbb{R}_{+};X\right),\forall t\in[0,n]\end{array}\right.\\ f\in C\left(\mathbb{R}_{+};X\right)\end{array}\right. (2.6)

We have following result, which represents a particular case of a more general existence and uniqueness result proved in 26 .

Theorem 2.1 Assume that (2.5)-(2.8) hold. Then there exists a unique function uC(+;X)u\in C\left(\mathbb{R}_{+};X\right) such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

u(t)K,\displaystyle u(t)\in K, (Au(t),vu(t))X+(𝒮u(t),vu(t))X\displaystyle(Au(t),v-u(t))_{X}+(\mathcal{S}u(t),v-u(t))_{X} (2.9)
(f(t),vu(t))XvK\displaystyle\geq(f(t),v-u(t))_{X}\quad\forall v\in K

Following the terminology introduced in [26] we refer to (2.9) as a history-dependent variational inequality. To avoid any confusion, we note that here and below the notation Au(t)Au(t) and 𝒮u(t)\mathcal{S}u(t) are short hand notation for A(u(t))A(u(t)) and (𝒮u)(t)(\mathcal{S}u)(t), i.e. Au(t)=A(u(t))Au(t)=A(u(t)) and 𝒮u(t)=(𝒮u)(t)\mathcal{S}u(t)=(\mathcal{S}u)(t), for all t+t\in\mathbb{R}_{+}.

3 The model

The physical setting is as follows. A viscoelastic body occupies a bounded domain Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary Γ\Gamma, divided into three measurable parts Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3} such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. The body is subject to the action of body forces of density 𝒇0\boldsymbol{f}_{0}. We also assume that the body is fixed on Γ1\Gamma_{1} and surfaces tractions of density 𝒇2\boldsymbol{f}_{2} act on Γ2\Gamma_{2}. On Γ3\Gamma_{3}, the body is in frictionless contact with a obstacle, the so-called foundation. We assume that the foundation is deformable and, therefore, the penetration is allowed. Nevertheless, when the penetration reaches a given bound gg, the foundation becomes rigid. And, finally, there are memory effects during the contact process. The process is quasistatic, and it is studied in the interval of time +=[0,)\mathbb{R}_{+}=[0,\infty). With these assumption, the classical formulation of the problem is the following.

Problem 𝒫\mathcal{P}. Find a displacement field 𝒖:Ω×+d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field 𝝈\boldsymbol{\sigma} : Ω×+𝕊d\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that, for all t+t\in\mathbb{R}_{+},

𝝈(t)=𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s)))ds in Ω,Div𝝈(t)+𝒇0(t)=𝟎 in Ω,𝒖(t)=𝟎 on Γ1,𝝈(t)𝝂=𝒇2(t) on Γ2,uν(t)g,σν(t)+p(uν(t))+0tb(ts)uν+(s)𝑑s0,(uν(t)g)(σν(t)+p(uν(t)+0tb(ts)uν+(s)ds)=0} on Γ3,\left.\begin{array}[]{rcc}\left.\boldsymbol{\sigma}(t)=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))\right)ds&\text{ in }\quad\Omega,\\ \operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}&\text{ in }\quad\Omega,\\ \boldsymbol{u}(t)=\mathbf{0}&\text{ on }\quad\Gamma_{1},\\ \boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)&\text{ on }\quad\Gamma_{2},\\ u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\leq 0,\\ \left(u_{\nu}(t)-g\right)\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)=0\right.\end{array}\right\}\quad\text{ on }\quad\Gamma_{3},

Here and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable 𝒙ΩΓ\boldsymbol{x}\in\Omega\cup\Gamma. Equation (3.1) represents the viscoelastic constitutive law of the material introduced in Section 1 and equation (3.2) is the equilibrium equation. Conditions (3.3) and (3.4) are the displacement and traction boundary conditions, respectively, and condition (3.6) shows that the tangential stress on the contact surface, denoted 𝝈τ\boldsymbol{\sigma}_{\tau}, vanishes. We use it here since we assume that the contact process is frictionless.

We now describe the contact condition (3.5) in which our main interest is. Here σν\sigma_{\nu} denotes the normal stress, uνu_{\nu} is the normal displacement and pp is a Lipschitz continuous increasing function which vanishes for a negative argument. Moreover, bb is the surface memory function and g>0g>0 is a given bound for the normal displacement. This condition can be derived in the following way. First, we assume that the penetration is limited by the bound gg and, therefore, at each time moment t+t\in\mathbb{R}_{+}, the normal displacement satisfies the inequality

uν(t)g on Γ3u_{\nu}(t)\leq g\quad\text{ on }\Gamma_{3} (3.7)

Next, we assume that the normal stress has an additive decomposition of the form

σν(t)=σνD(t)+σνR(t)+σνM(t) on Γ3\sigma_{\nu}(t)=\sigma_{\nu}^{D}(t)+\sigma_{\nu}^{R}(t)+\sigma_{\nu}^{M}(t)\quad\text{ on }\Gamma_{3} (3.8)

in which the functions σνD,σνR\sigma_{\nu}^{D},\sigma_{\nu}^{R} and σνM\sigma_{\nu}^{M} describe the deformability, the rigidity and the memory properties of the foundation, at each t+t\in\mathbb{R}_{+}. We assume that the function σνD\sigma_{\nu}^{D} satisfies the normal compliance contact condition (1.2), that is

σνD(t)=p(uν(t)) on Γ3-\sigma_{\nu}^{D}(t)=p\left(u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3} (3.9)

The part σνR\sigma_{\nu}^{R} of the normal stress satisfies the Signorini condition in the form with a gap function (1.6), i.e.

σνR(t)0,σνR(t)(uν(t)g)=0 on Γ3\sigma_{\nu}^{R}(t)\leq 0,\quad\sigma_{\nu}^{R}(t)\left(u_{\nu}(t)-g\right)=0\quad\text{ on }\Gamma_{3} (3.10)

And, finally, the function σνM\sigma_{\nu}^{M} satisfies the memory condition (1.7), that is

σνM(t)=0tb(ts)uν+(s)𝑑s on Γ3-\sigma_{\nu}^{M}(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\quad\text{ on }\Gamma_{3} (3.11)

We combine equalities (3.8), (3.10) and (3.11) to see that

σνR(t)=σν(t)+p(uν(t))+0tb(ts)uν+(s)𝑑s on Γ3\sigma_{\nu}^{R}(t)=\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\quad\text{ on }\Gamma_{3} (3.12)

Then we substitute equality (3.12) in (3.10) and use inequality (3.7) to obtain the contact condition (3.5).

Not that (3.5) describes a condition with unilateral constraint, since inequality (3.7) holds at each time moment. Assume now that at a given moment tt there is penetration which did not reach the bound gg, i.e. 0<uν(t)<g0<u_{\nu}(t)<g. Then (3.5) yields

σν(t)=p(uν(t))+0tb(ts)uν+(s)𝑑s-\sigma_{\nu}(t)=p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds (3.13)

This equality shows that at the moment tt, the reaction of the foundation depend both on the current value of the penetration (represented by the term p(uν(t)))\left.p\left(u_{\nu}(t)\right)\right) as well as on the history of the penetration (represented by the integral term in (3.13)). When bb is a positive function the reaction of the foundation is larger than that given by the term p(uν(t))p\left(u_{\nu}(t)\right) and we conclude that equality (3.13) models the hardening phenomenon of the surface. When bb is a negative function the reaction of the foundation is smaller than that given by the term p(uν(t))p\left(u_{\nu}(t)\right) and we conclude that equality (3.13) models the softening phenomenon of the surface. Hardening and softening of contact surfaces represent an important phenomenon which appear in various industrial applications applications, see for instance [16] and references therein.

In conclusion, condition (3.5) shows that the contact follows a normal compliance condition with memory term of the form (3.13) but up to the limit gg and then, when this limit is reached, the contact follows a Signorini-type unilateral condition with the gap gg. For this reason we refer to this condition as to a normal compliance contact condition with memory term and unilateral constraint. It can be interpreted physically as follows. The foundation is assumed to be made of a hard material covered by a thin layer of a soft material with thickness gg. The soft material has a viscoelastic behaviour, i.e. is deformable, allows penetration and presents memory effects; the contact with this layer is modelled with normal compliance and memory term. The hard material is perfectly rigid and, therefore, it does not allow penetration; the contact with this material is modelled with the Signorini contact condition. To resume, the foundation has a rigid-viscoelastic behavior; its viscoelastic behavior is given by the layer of the soft material while its rigid behavior is given by the hard material.

In the particular case when b=0b=0 the contact condition (3.5) was introduced in [5], in the study of a dynamic frictionless contact problem with elastic-visco-plastic
materials. Then, it was used in [1] and [27] in the study of various quasistatic contact problems. Also, note that when g>0,p=0g>0,p=0 and b=0b=0 condition (3.5) becomes the Signorini contact condition in a form with a gap function, (1.7). And, finally, if b=0b=0 and gg\rightarrow\infty, we recover the normal compliance contact condition with a zero gap function, (1.2).

4 Existence and uniqueness results

To derive the variational formulation of the problem 𝒫\mathcal{P} we list the assumptions on the problem data. First, we assume that the elasticity operator 𝒜\mathcal{A} and the relaxation tensor \mathcal{B} satisfy the following conditions.

{ (a) 𝒜:Ω×𝕊d𝕊d (b) There exists L𝒜>0 such that 𝒜(𝒙,𝜺1)𝒜(𝒙,𝜺2)L𝒜𝜺1𝜺2𝜺1,𝜺2𝕊d, a.e. 𝒙Ω (c) There exists m𝒜>0 such that (𝒜(𝒙,𝜺1)𝒜(𝒙,𝜺2))(𝜺1𝜺2)m𝒜𝜺1𝜺22𝜺1,𝜺2𝕊d, a.e. 𝒙Ω (d) The mapping 𝒙𝒜(𝒙,𝜺) is measurable on Ω for any 𝜺𝕊d (e) The mapping 𝒙𝒜(𝒙,𝟎) belongs to QC(+;𝐐)\left\{\begin{array}[]{l}\text{ (a) }\mathcal{A}:\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}\text{. }\\ \text{ (b) There exists }L_{\mathcal{A}}>0\text{ such that }\\ \left\|\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right\|\leq L_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (c) There exists }m_{\mathcal{A}}>0\text{ such that }\\ \quad\left(\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right)\cdot\left(\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right)\geq m_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|^{2}\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{A}(\boldsymbol{x},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega\text{, }\\ \text{ for any }\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{. }\\ \text{ (e) The mapping }\boldsymbol{x}\mapsto\mathcal{A}(\boldsymbol{x},\mathbf{0})\text{ belongs to }Q\text{. }\\ \qquad\mathcal{B}\in C\left(\mathbb{R}_{+};\mathbf{Q}_{\infty}\right)\text{. }\end{array}\right.

The normal compliance and the surface memory function satisfy the conditions

{ (a) p:Γ3×+ (b) There exists Lp>0 such that |p(𝒙,r1)p(𝒙,r2)|Lp|r1r2|r1,r2, a.e. 𝒙Γ3 (c) (p(𝒙,r1)p(𝒙,r2))(r1r2)0r1,r2, a.e. 𝒙Γ3 (d) The mapping 𝒙p(𝒙,r) is measurable on Γ3 for any r (e) p(𝒙,r)=0 for all r0, a.e. 𝒙Γ3bC(+;L(Γ3))\left\{\begin{array}[]{l}\text{ (a) }p:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}\cdot\\ \text{ (b) There exists }L_{p}>0\text{ such that }\\ \quad\left|p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}\\ \text{ (c) }\left(p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p(\boldsymbol{x},r)\text{ is measurable on }\Gamma_{3}\\ \quad\text{ for any }r\in\mathbb{R}\text{. }\\ \text{ (e) }p(\boldsymbol{x},r)=0\text{ for all }r\leq 0,\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}\\ \quad b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right)\end{array}\right.

Finally, we assume that the densities of body forces and surface tractions have the regularity

𝒇0C(+;L2(Ω)d),𝒇2C(+;L2(Γ2)d)\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right) (4.5)

and, moreover, we introduce the set of admissible displacements fields defined by

U={𝒗V:vνg on Γ3}.U=\left\{\boldsymbol{v}\in V:v_{\nu}\leq g\text{ on }\Gamma_{3}\right\}. (4.6)

Assume in what follows that ( 𝒖,𝝈\boldsymbol{u},\boldsymbol{\sigma} ) are sufficiently regular functions which satisfy (3.1)-(3.6) and let 𝒗U\boldsymbol{v}\in U and t>0t>0 be given. We use the Green formula (2.2) and the equilibrium equation (3.2) to obtain

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x+Γ𝝈(t)𝝂(𝒗𝒖(t))𝑑a\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx+\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

We split the boundary integral over Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3} and, since 𝒗𝒖(t)=𝟎\boldsymbol{v}-\boldsymbol{u}(t)=\mathbf{0} on Γ1\Gamma_{1} and 𝝈(t)𝝂=𝒇2(t)\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on Γ2\Gamma_{2}, we obtain

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x\displaystyle\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx (4.7)
+Γ2𝒇2(t)(𝒗𝒖(t))𝑑a+Γ3𝝈(t)𝝂(𝒗𝒖(t))𝑑a\displaystyle\quad+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

Moreover, since

𝝈(t)𝝂(𝒗𝒖(t))=σν(t)(vνuν(t))+𝝈τ(t)𝝂(𝒗τ𝒖τ(t)) on Γ3,\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))=\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)+\boldsymbol{\sigma}_{\tau}(t)\boldsymbol{\nu}\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3},

condition (3.6) implies that

Γ3𝝈(t)𝝂(𝒗𝒖(t))𝑑a=Γ3σν(t)(vνuν)𝑑a\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da=\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}\right)da (4.8)

We write now

σν(t)(vνuν(t))=(σν(t)+p(uν(t))+0tb(ts)uν+(s)𝑑s)(vνg)\displaystyle\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)=\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}-g\right)
+(σν(t)+p(uν(t))+0tb(ts)uν+(s)𝑑s)(guν(t))\displaystyle\quad+\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(g-u_{\nu}(t)\right)
(p(uν(t))+0tb(ts)uν+(s)𝑑s)(vνuν(t)) on Γ3\displaystyle\quad-\left(p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}

then we use the contact conditions (3.5) and the definition (4.6) of the set UU to see that

σν(t)(vνuν(t))(p(uν(t))+0tb(ts)uν+(s)𝑑s)(vνuν(t)) on Γ3\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)\geq-\left(p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}

and, therefore,

Γ3σν(t)(vνuν(t))𝑑aΓ3(p(uν(t))+0tb(ts)uν+(s)𝑑s)(vνuν(t))𝑑a\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da\geq-\int_{\Gamma_{3}}\left(p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}-u_{\nu}(t)\right)da (4.9)

We combine now equalities (4.7), (4.8) then we use inequality (4.9) to deduce that

(𝝈(t),𝜺(𝒗)𝜺(𝒖(t)))Q+(p(uν(t)),vνuν(t))L2(Γ3)\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\left(p\left(u_{\nu}(t)\right),v_{\nu}-u_{\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (4.10)
+(0tb(ts)uν+(s)𝑑s,vνuν(t))L2(Γ3)\displaystyle\quad+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}-u_{\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
(𝒇0(t),𝒗𝒖(t))L2(Ω)d+(𝒇2(t),𝒗𝒖(t))L2(Γ2)d\displaystyle\quad\geq\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}

In addition, we note that the boundary condition (3.3), the first inequality in (3.5) and notation (4.6) imply that 𝒖(t)U\boldsymbol{u}(t)\in U. Therefore, using the constitutive law (3.1) and inequality (4.10) we derive the following variational formulation of Problem 𝒫\mathcal{P}.

Problem 𝒫V\mathcal{P}^{V}. Find a displacement field 𝒖:+V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

𝒖(t)\displaystyle\boldsymbol{u}(t) U,(𝒜𝜺(𝒖(t)),𝜺(𝒗)𝜺(𝒖(t)))Q\displaystyle\in U,\quad(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q} (4.11)
+\displaystyle+ (0t(ts)𝜺(𝒖(s)ds,𝜺(𝒗)𝜺(𝒖(t)))Q\displaystyle\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s)ds,\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}\right.
+(p(uν(t)),vνuν(t))L2(Γ3)+(0tb(ts)uν+(s)ds,vνuν(t)))L2(Γ3)\displaystyle\left.+\left(p\left(u_{\nu}(t)\right),v_{\nu}-u_{\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}-u_{\nu}(t)\right)\right)_{L^{2}\left(\Gamma_{3}\right)}
(𝒇0(t),𝒗𝒖(t))L2(Ω)d+(𝒇2(t),𝒗𝒖(t))L2(Γ2)d𝒗U\displaystyle\geq\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\forall\boldsymbol{v}\in U

In the study of the problems 𝒫V\mathcal{P}^{V} we have the following existence and uniqueness result.

Theorem 4.1 Assume that (4.1) -(4.5) hold. Then, Problem 𝒫V\mathcal{P}^{V} has a unique solution which satisfies 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right).

Proof. We start with by providing an equivalent form of Problem 𝒫V\mathcal{P}^{V}. To this end we use the Riesz representation theorem to define the operators P:VVP:V\rightarrow V, 𝒮:C(+;V)C(+;V)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) and the function 𝒇:+V\boldsymbol{f}:\mathbb{R}_{+}\rightarrow V by equalities

(P𝒖,𝒗)V=Γ3p(uν)vν𝑑a𝒖,𝒗V\displaystyle(P\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (4.12)
(𝒮𝒖(t),𝒗)V=(0t(ts)𝜺(𝒖(s))𝑑s,𝜺(𝒗))Q\displaystyle(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}=\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds,\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q} (4.13)
+(0tb(ts)uν+(s)𝑑s,vν)L2(Γ3)𝒖C(+;V),𝒗V\displaystyle\quad+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V
(𝒇(t),𝒗)V=Ω𝒇0(t)𝒗𝑑x+Γ2𝒇2(t)𝒗𝑑a𝒖,𝒗V,t+\displaystyle(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (4.14)

Then, it is easy to see that Problem 𝒫V\mathcal{P}^{V} is equivalent to the problem of finding a function 𝒖:+V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V such that the inequality below holds, for all t+t\in\mathbb{R}_{+}:

𝒖(t)\displaystyle\boldsymbol{u}(t) U,(𝒜𝜺(𝒖(t)),𝜺(𝒗)𝜺(𝒖(t)))Q+(P𝒖(t),𝒗𝒖(t))V\displaystyle\in U,\quad(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V} (4.15)
+(𝒮𝒖(t),𝒗𝒖(t))V(𝒇(t),𝒗𝒖(t))V𝒗U\displaystyle+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U

To solve the variational inequality (4.15) we use Theorem 2.1 with X=VX=V and K=UK=U. To this end we consider the operator A:VVA:V\rightarrow V defined by

(A𝒖,𝒗)V=(𝒜ε(𝒖),ε(𝒗))Q+(P𝒖,𝒗)V𝒖,𝒗V(A\boldsymbol{u},\boldsymbol{v})_{V}=(\mathcal{A}\varepsilon(\boldsymbol{u}),\varepsilon(\boldsymbol{v}))_{Q}+(P\boldsymbol{u},\boldsymbol{v})_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (4.16)

It is easy to see that condition (2.5) holds. Next, we use (4.1), (4.3) and (2.1) to see that the operator AA verifies condition (2.6). Let nn\in\mathbb{N}^{*}. Then, a simple calculation based on assumptions (4.2), (4.4) and inequalities (2.1), (2.3) shows that

{𝒮𝒖1(t)𝒮𝒖2(t)Vdmaxr[0,n](r)𝐐0t𝒖1(s)𝒖2(s)V𝑑s+c02maxr[0,n]b(r)L(Γ3)0t𝒖1(s)𝒖2(s)V𝑑s𝒖1,𝒖2C(+;V),t[0,n]\left\{\begin{array}[]{c}\left\|\mathcal{S}\boldsymbol{u}_{1}(t)-\mathcal{S}\boldsymbol{u}_{2}(t)\right\|_{V}\leq d\max_{r\in[0,n]}\|\mathcal{B}(r)\|_{\mathbf{Q}_{\infty}}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds\\ +c_{0}^{2}\max_{r\in[0,n]}\|b(r)\|_{L^{\infty}\left(\Gamma_{3}\right)}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds\\ \forall\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in C\left(\mathbb{R}_{+};V\right),\forall t\in[0,n]\end{array}\right.

This inequality implies that the operator (4.13) satisfies condition (2.7) with

rn=dmaxr[0,n](r)𝐐+c02maxr[0,n]b(r)L(Γ3)r_{n}=d\max_{r\in[0,n]}\|\mathcal{B}(r)\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}\max_{r\in[0,n]}\|b(r)\|_{L^{\infty}\left(\Gamma_{3}\right)} (4.18)

Finally, using (4.5) and (4.14) we deduce that 𝒇C(+;V)\boldsymbol{f}\in C\left(\mathbb{R}_{+};V\right) and, therefore, (2.8) holds. It follows now from Theorem 2.1 that there exists a unique function 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) which satisfies the inequality

𝒖(t)U,(A𝒖(t),𝒗𝒖(t))V+(𝒮𝒖(t),𝒗𝒖(t))V\displaystyle\boldsymbol{u}(t)\in U,\quad(A\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V} (4.19)
(𝒇(t),𝒗𝒖(t))V𝒗U\displaystyle\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U

for all t+t\in\mathbb{R}_{+}. And, using (4.16) we deduce that that there exists a unique function 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) such that (4.15) holds for all t+t\in\mathbb{R}_{+}, which concludes the proof.

Let σ\sigma be the function defined by (3.1). Then, it follows (4.1) and (4.2) that 𝝈C(+;Q)\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right). Moreover, it is easy to see that (4.10) holds for all t+t\in\mathbb{R}_{+}and, using standard arguments, it result from here that

Div𝝈(t)+𝒇0(t)=𝟎t+\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\quad\forall t\in\mathbb{R}_{+} (4.20)

Therefore, using the regularity 𝒇0C(+;L2(Ω)d)\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right) in (4.5) we deduce that Div𝝈C(+;L2(Ω)d)\operatorname{Div}\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right) which implies that 𝝈C(+;Q1)\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q_{1}\right). A couple of functions ( 𝒖,𝝈\boldsymbol{u},\boldsymbol{\sigma} ) which satisfies (3.1), (4.11) for all t+t\in\mathbb{R}_{+}is called a weak solution to the contact problem 𝒫\mathcal{P}. We conclude that Theorem 4.1 provides the unique weak solvability of Problem 𝒫\mathcal{P}. Moreover, the regularity of the weak solution is 𝒖C(+;V),𝝈C(+;Q1)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q_{1}\right).

5 A first convergence result

We study now the dependence of the solution of Problem 𝒫V\mathcal{P}^{V} with respect to perturbations of the data. To this end, we assume in what follows that (4.1)-(4.5) hold and we denote by 𝒖\boldsymbol{u} the solution of Problem 𝒫V\mathcal{P}^{V} obtained in Theorem 4.1. For each ρ>0\rho>0 let ρ,pρ,bρ,𝒇0ρ\mathcal{B}_{\rho},p_{\rho},b_{\rho},\boldsymbol{f}_{0\rho} and 𝒇2ρ\boldsymbol{f}_{2\rho} be perturbations of ,p,b,𝒇0\mathcal{B},p,b,\boldsymbol{f}_{0} and 𝒇2\boldsymbol{f}_{2} which satisfy conditions (4.2), (4.3), (4.4) and (4.5), respectively. We consider the following variational problem.

Problem 𝒫ρV\mathcal{P}_{\rho}^{V}. Find a displacement field 𝒖ρ:+V\boldsymbol{u}_{\rho}:\mathbb{R}_{+}\rightarrow V such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds :

𝒖ρ(t)\displaystyle\boldsymbol{u}_{\rho}(t) U,(𝒜𝜺(𝒖ρ(t)),𝜺(𝒗)𝜺(𝒖ρ(t)))Q\displaystyle\in U,\quad\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q} (5.1)
+\displaystyle+ (0tρ(ts)𝜺(𝒖ρ(s))𝑑s,𝜺(𝒗)𝜺(𝒖ρ(t)))Q\displaystyle\left(\int_{0}^{t}\mathcal{B}_{\rho}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(s)\right)ds,\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}
+\displaystyle+ (pρ(uρν(t)),vνuρν(t))L2(Γ3)+(0tbρ(ts)uρν+(s)𝑑s,vνuρν(t))L2(Γ3)\displaystyle\left(p_{\rho}\left(u_{\rho\nu}(t)\right),v_{\nu}-u_{\rho\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(\int_{0}^{t}b_{\rho}(t-s)u_{\rho\nu}^{+}(s)ds,v_{\nu}-u_{\rho\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
(𝒇0ρ(t),𝒗𝒖ρ(t))L2(Ω)d+(𝒇2ρ(t),𝒗𝒖ρ(t))L2(Γ2)d𝒗U\displaystyle\geq\left(\boldsymbol{f}_{0\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\forall\boldsymbol{v}\in U

Note that, here and below, uρνu_{\rho\nu} represents the normal component of the function 𝒖ρ\boldsymbol{u}_{\rho}.
It follows from Theorem 4.1 that, for each ρ>0\rho>0 Problem 𝒫ρV\mathcal{P}_{\rho}^{V} has a unique solution 𝒖ρC(+;V)\boldsymbol{u}_{\rho}\in C\left(\mathbb{R}_{+};V\right). Consider now the following assumptions:

ρbρb𝒇0ρ𝒇0 in C(+;Q) in C(+;L(Γ3)) as ρ0.𝒇2ρ𝒇2 in C(+;L2(Γ2)d) as ρ0.\displaystyle\quad\begin{array}[]{l}\mathcal{B}_{\rho}\rightarrow\mathcal{B}\\ b_{\rho}\rightarrow b\\ \quad\boldsymbol{f}_{0\rho}\rightarrow\boldsymbol{f}_{0}\quad\text{ in }C\left(\mathbb{R}_{+};\mathrm{Q}_{\infty}\right)\quad\text{ in }C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right)\quad\text{ as }\quad\rho\rightarrow 0.\\ \quad\boldsymbol{f}_{2\rho}\rightarrow\boldsymbol{f}_{2}\quad\text{ in }C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right)\quad\text{ as }\quad\rho\rightarrow 0.\end{array} (5.2)
{ There exists G:++and β+such that  (a) |pρ(𝒙,r)p(𝒙,r)|G(ρ)(|r|+β)r, a.e. 𝒙Γ3, for each ρ>0. (b) G(ρ)0 as ρ0.\displaystyle\left\{\begin{array}[]{l}\text{ There exists }G:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\text{and }\beta\in\mathbb{R}_{+}\text{such that }\\ \text{ (a) }\left|p_{\rho}(\boldsymbol{x},r)-p(\boldsymbol{x},r)\right|\leq G(\rho)(|r|+\beta)\\ \forall r\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3},\text{ for each }\rho>0.\\ \text{ (b) }G(\rho)\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0.\end{array}\right. (5.3)

We have the following convergence result.
Theorem 5.1 Under assumptions (5.2)-(5.6), the solution 𝒖ρ\boldsymbol{u}_{\rho} of Problem 𝒫ρV\mathcal{P}_{\rho}^{V} converges to the solution 𝒖\boldsymbol{u} of Problem 𝒫V\mathcal{P}^{V}, i.e.,

𝒖ρ𝒖 in C(+;V) as ρ0.\boldsymbol{u}_{\rho}\rightarrow\boldsymbol{u}\quad\text{ in }\quad C\left(\mathbb{R}_{+};V\right)\quad\text{ as }\quad\rho\rightarrow 0. (5.7)

Proof. Let ρ>0\rho>0. We use the Riesz representation theorem to define the operators Pρ:VV,𝒮ρ:C(+;V)C(+;V)P_{\rho}:V\rightarrow V,\mathcal{S}_{\rho}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) and the function 𝒇ρ:+V\boldsymbol{f}_{\rho}:\mathbb{R}_{+}\rightarrow V by equalities

(Pρ𝒖,𝒗)V=Γ3pρ(uν)vν𝑑a𝒖,𝒗V\displaystyle\left(P_{\rho}\boldsymbol{u},\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}p_{\rho}\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.8)
(𝒮ρ𝒖(t),𝒗)V=(0tρ(ts)𝜺(𝒖(s))𝑑s,𝜺(𝒗))Q\displaystyle\left(\mathcal{S}_{\rho}\boldsymbol{u}(t),\boldsymbol{v}\right)_{V}=\left(\int_{0}^{t}\mathcal{B}_{\rho}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds,\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q} (5.9)
+(0tbρ(ts)uν+(s)𝑑s,vν)L2(Γ3)𝒖C(+;V),𝒗V\displaystyle\quad+\left(\int_{0}^{t}b_{\rho}(t-s)u_{\nu}^{+}(s)ds,v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V
(𝒇ρ(t),𝒗)V=Ω𝒇0ρ(t)𝒗𝑑x+Γ2𝒇2ρ(t)𝒗𝑑a𝒖,𝒗V,t+\displaystyle\left(\boldsymbol{f}_{\rho}(t),\boldsymbol{v}\right)_{V}=\int_{\Omega}\boldsymbol{f}_{0\rho}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2\rho}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (5.10)

It follows from the proof of Theorem 4.1 that 𝒖\boldsymbol{u} is a solution of Problem 𝒫V\mathcal{P}^{V} iff 𝒖\boldsymbol{u} solves inequality (4.15), for all t+t\in\mathbb{R}_{+}. In a similar way, 𝒖ρ\boldsymbol{u}_{\rho} is a solution of Problem 𝒫ρV\mathcal{P}_{\rho}^{V} iff, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

𝒖ρ(t)\displaystyle\boldsymbol{u}_{\rho}(t) U,(𝒜𝜺(𝒖ρ(t)),𝜺(𝒗)𝜺(𝒖ρ(t)))Q+(Pρ𝒖ρ(t),𝒗𝒖ρ(t))V\displaystyle\in U,\quad\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}+\left(P_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V} (5.11)
+(𝒮ρ𝒖ρ(t),𝒗𝒖ρ(t)V(𝒇ρ(t),𝒗𝒖ρ(t))V𝒗U\displaystyle+\left(\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)_{V}\geq\left(\boldsymbol{f}_{\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V}\quad\forall\boldsymbol{v}\in U\right.

Let nn\in\mathbb{N}^{*} and let t[0,n]t\in[0,n]. We take 𝒗=𝒖(t)\boldsymbol{v}=\boldsymbol{u}(t) in (5.11) and 𝒗=𝒖ρ(t)\boldsymbol{v}=\boldsymbol{u}_{\rho}(t) in (4.15) and add the resulting inequalities to obtain

(𝒜ε\displaystyle(\mathcal{A}\varepsilon (𝒖ρ(t))𝒜ε(𝒖(t)),𝜺(𝒖ρ(t))𝜺(𝒖(t)))Q\displaystyle\left.\left(\boldsymbol{u}_{\rho}(t)\right)-\mathcal{A}\varepsilon(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q} (5.12)
\displaystyle\leq (Pρ𝒖ρ(t)P𝒖(t),𝒖(t)𝒖ρ(t))V\displaystyle\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}
+(𝒮ρ𝒖ρ(t)𝒮𝒖(t),𝒖(t)𝒖ρ(t))V+(𝒇ρ(t)𝒇(t),𝒖ρ(t)𝒖(t))V\displaystyle+\left(\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}+\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right)_{V}

Next, we use the definitions (5.8) and (4.12), the monotonicity of the function pρp_{\rho} and assumption (5.6) to see that

(Pρ𝒖ρ(t)P𝒖(t),𝒖(t)𝒖ρ(t))V=Γ3(pρ(uρν)p(uν))(uν(t)uρν(t))𝑑a\displaystyle\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}=\int_{\Gamma_{3}}\left(p_{\rho}\left(u_{\rho\nu}\right)-p\left(u_{\nu}\right)\right)\left(u_{\nu}(t)-u_{\rho\nu}(t)\right)da
Γ3(pρ(uν(t))p(uν(t)))(uν(t)uρν(t))𝑑a\displaystyle\quad\leq\int_{\Gamma_{3}}\left(p_{\rho}\left(u_{\nu}(t)\right)-p\left(u_{\nu}(t)\right)\right)\left(u_{\nu}(t)-u_{\rho\nu}(t)\right)da
Γ3|pρ(uν(t))p(uν(t))||uν(t)uρν(t)|𝑑a\displaystyle\quad\leq\int_{\Gamma_{3}}\left|p_{\rho}\left(u_{\nu}(t)\right)-p\left(u_{\nu}(t)\right)\right|\left|u_{\nu}(t)-u_{\rho\nu}(t)\right|da
Γ3G(ρ)(|uν(t)|+β)|uν(t)uρν(t)|𝑑a\displaystyle\quad\leq\int_{\Gamma_{3}}G(\rho)\left(\left|u_{\nu}(t)\right|+\beta\right)\left|u_{\nu}(t)-u_{\rho\nu}(t)\right|da

Therefore, using the trace inequality (2.1), after some elementary calculus we find
that

(Pρ𝒖ρ(t)P𝒖(t),𝒖(t)𝒖ρ(t))V\displaystyle\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V} (5.13)
G(ρ)(c02𝒖(t)V+c0β meas (Γ3)12)𝒖ρ(t)𝒖(t)V\displaystyle\quad\leq G(\rho)\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\beta\text{ meas }\left(\Gamma_{3}\right)^{\frac{1}{2}}\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

On the other hand, using assumptions (4.2), (4.4) and arguments similar to those used in the proof of (4.17) we find that

𝒮ρ𝒖ρ(t)𝒮𝒖(t)V𝒮ρ𝒖ρ(t)𝒮ρ𝒖(t)V+𝒮ρ𝒖(t)𝒮𝒖(t)V\displaystyle\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{V}\leq\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{\rho}\boldsymbol{u}(t)\right\|_{V}+\left\|\mathcal{S}_{\rho}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{V}
dmaxr[0,n]ρ(r)𝐐0t𝒖ρ(s)𝒖(s)V𝑑s\displaystyle\quad\leq d\max_{r\in[0,n]}\left\|\mathcal{B}_{\rho}(r)\right\|_{\mathbf{Q}_{\infty}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds
+c02maxr[0,n]bρ(r)L(Γ3)0t𝒖ρ(s)𝒖(s)V𝑑s\displaystyle\quad+c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds
+dmaxr[0,n]ρ(r)(r)𝐐0t𝒖(s)V𝑑s\displaystyle\quad+d\max_{r\in[0,n]}\left\|\mathcal{B}_{\rho}(r)-\mathcal{B}(r)\right\|_{\mathbf{Q}_{\infty}}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds
+c02maxr[0,n]bρ(r)b(r)L(Γ3)0t𝒖(s)V𝑑s\displaystyle\quad+c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)-b(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds

Therefore,

(𝒮ρ𝒖ρ(t)𝒮𝒖(t),𝒖(t)𝒖ρ(t))V\displaystyle\left(\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V} (5.14)
𝒮ρ𝒖ρ(t)𝒮𝒖(t)V𝒖ρ(t)𝒖(t)V\displaystyle\quad\leq\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{V}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}
(θρn0t𝒖ρ(s)𝒖(s)V𝑑s+ωρn0t𝒖(s)V𝑑s)𝒖ρ(t)𝒖(t)V\displaystyle\quad\leq\left(\theta_{\rho n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\omega_{\rho n}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

where

θρn=dmaxr[0,n]ρ(r)𝐐+c02maxr[0,n]bρ(r)L(Γ3)\displaystyle\theta_{\rho n}=d\max_{r\in[0,n]}\left\|\mathcal{B}_{\rho}(r)\right\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)} (5.15)
ωρn=dmaxr[0,n]ρ(r)(r)𝐐+c02maxr[0,n]bρ(r)b(r)L(Γ3)\displaystyle\omega_{\rho n}=d\max_{r\in[0,n]}\left\|\mathcal{B}_{\rho}(r)-\mathcal{B}(r)\right\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)-b(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)} (5.16)

Finally, we note that

(𝒇ρ(t)𝒇(t),𝒖ρ(t)𝒖(t))Vδρn𝒖ρ(t)𝒖(t)V\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right)_{V}\leq\delta_{\rho n}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V} (5.17)

where

δρn=maxr[0,n]𝒇ρ(r)𝒇(r)V\delta_{\rho n}=\max_{r\in[0,n]}\left\|\boldsymbol{f}_{\rho}(r)-\boldsymbol{f}(r)\right\|_{V} (5.18)

and, using assumption (4.1) it follows that

(𝒜𝜺(𝒖ρ(t))𝒜𝜺(𝒖(t)),𝜺(𝒖ρ(t))𝜺(𝒖(t)))Qm𝒜𝒖ρ(t)𝒖(t)V2.\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)-\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q}\geq m_{\mathcal{A}}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}. (5.19)

We combine now inequalities (5.12)-(5.14), (5.17) and (5.19) to deduce that

𝒖ρ(t)𝒖(t)VG(ρ)m𝒜(c02𝒖(t)V+c0β meas (Γ3)12)\displaystyle\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\frac{G(\rho)}{m_{\mathcal{A}}}\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\beta\text{ meas }\left(\Gamma_{3}\right)^{\frac{1}{2}}\right) (5.20)
+θρnm𝒜0t𝒖ρ(s)𝒖(s)V𝑑s+ωρnm𝒜0t𝒖(s)V𝑑s+δρnm𝒜\displaystyle\quad+\frac{\theta_{\rho n}}{m_{\mathcal{A}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\frac{\omega_{\rho n}}{m_{\mathcal{A}}}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds+\frac{\delta_{\rho n}}{m_{\mathcal{A}}}

Denote

ξn,u=max{1m𝒜(c02maxr[0,n]𝒖(r)V+c0βmeas(Γ3)12),1m𝒜0n𝒖(s)Vds,1m𝒜}\xi_{n,u}=\max\left\{\frac{1}{m_{\mathcal{A}}}\left(c_{0}^{2}\max_{r\in[0,n]}\|\boldsymbol{u}(r)\|_{V}+c_{0}\beta\operatorname{meas}\left(\Gamma_{3}\right)^{\frac{1}{2}}\right),\frac{1}{m_{\mathcal{A}}}\int_{0}^{n}\|\boldsymbol{u}(s)\|_{V}ds,\frac{1}{m_{\mathcal{A}}}\right\}

Then, (5.20) yields

𝒖ρ(t)𝒖(t)V(G(ρ)+ωρn+δρn)ξn,u+θρnm𝒜0t𝒖ρ(s)𝒖(s)V𝑑s\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(G(\rho)+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u}+\frac{\theta_{\rho n}}{m_{\mathcal{A}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds

and, using the Gronwall inequality we obtain

𝒖ρ(t)𝒖(t)V(G(ρ)+ωρn+δρn)ξn,ueθρnm𝒜t\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(G(\rho)+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u}e^{\frac{\theta_{\rho n}}{m_{\mathcal{A}}}t} (5.21)

We use the assumptions (5.2), (5.3) and the equivalence (2.4) to see that the sequence (θρn)ρ\left(\theta_{\rho n}\right)_{\rho} defined by (5.15) is bounded. Therefore, there exists ζn>0\zeta_{n}>0 which depends on nn and is independent of ρ\rho such that

0θρnζn for all ρ>00\leq\theta_{\rho n}\leq\zeta_{n}\quad\text{ for all }\quad\rho>0 (5.22)

We pas to the upper bound as t[0,n]t\in[0,n] in (5.21) and use (5.22) to obtain

maxt[0,n]𝒖ρ(t)𝒖(t)V(G(ρ)+ωρn+δρn)ξn,uenζnm𝒜 for all ρ>0\max_{t\in[0,n]}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(G(\rho)+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u}e^{\frac{n\zeta_{n}}{m_{\mathcal{A}}}}\quad\text{ for all }\quad\rho>0 (5.23)

We use now assumption (5.2)-(5.5) and definitions (5.16), (5.18) to see that

ωρn0 and δρn0 as ρ0\omega_{\rho n}\rightarrow 0\quad\text{ and }\quad\delta_{\rho n}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.24)

We combine now the convergences (5.24) and (5.6) (b) with inequality (5.23) to obtain that

maxt[0,n]𝒖ρ(t)𝒖(t)V0 as ρ0\max_{t\in[0,n]}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.25)

Since the convergence (5.25) holds for each nn\in\mathbb{N}^{*}, we deduce from (2.4) that (5.7) holds, which concludes the proof.

Note that the convergence result in Theorem 5.1 can be easily extended to the corresponding stress functions. Indeed, let 𝝈\boldsymbol{\sigma} be the function defined by (3.1) and, for all ρ>0\rho>0, denote by 𝝈ρ\boldsymbol{\sigma}_{\rho} the function given by

𝝈ρ(t)=𝒜𝜺(𝒖ρ(t))+0tρ(ts)𝜺(𝒖ρ(s))𝑑s\boldsymbol{\sigma}_{\rho}(t)=\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)+\int_{0}^{t}\mathcal{B}_{\rho}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(s)\right)ds (5.26)

for all t+t\in\mathbb{R}_{+}. Then, it follows that 𝝈ρC(+;Q1)\boldsymbol{\sigma}_{\rho}\in C\left(\mathbb{R}_{+};Q_{1}\right) and, moreover, (5.1) yields

Div𝝈ρ(t)+𝒇ρ0(t)=𝟎t+.\operatorname{Div}\boldsymbol{\sigma}_{\rho}(t)+\boldsymbol{f}_{\rho 0}(t)=\mathbf{0}\quad\forall t\in\mathbb{R}_{+}. (5.27)

We combine now equalities (3.1), (4.20), (5.26) and (5.27), then we use the convergences (5.2), (5.4) and (5.7) to see that

𝝈ρ𝝈 in C(+;Q1) as ρ0.\boldsymbol{\sigma}_{\rho}\rightarrow\boldsymbol{\sigma}\quad\text{ in }\quad C\left(\mathbb{R}_{+};Q_{1}\right)\quad\text{ as }\rho\rightarrow 0. (5.28)

In addition to the mathematical interest in the convergence result (5.7), (5.28), it is of importance from mechanical point of view, since it states that the weak solution of problem (3.1)-(3.5) depends continuously on the relaxation operator, the normal compliance function, the surface memory function and the densities of body forces and surface tractions.

6 A second convergence result

In this section we provide a second convergence result in the study of Problem 𝒫\mathcal{P}, based on the penalization of the unilateral constraint. For simplicity we assume that the function pp does not depend on 𝒙Γ3\boldsymbol{x}\in\Gamma_{3}, i.e. we consider the homogeneous case. Note that in this case assumption (4.3) can be written as follows:

{ (a) p:+.(b) There exists Lp>0 such that |p(r1)p(r2)|Lp|r1r2|r1,r2. (c) (p(r1)p(r2))(r1r2)0r1,r2. (d) p(r)=0 for all r0.\left\{\begin{array}[]{l}\text{ (a) }p:\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{p}>0\text{ such that }\\ \quad\left|p\left(r_{1}\right)-p\left(r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (c) }\left(p\left(r_{1}\right)-p\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (d) }p(r)=0\text{ for all }r\leq 0.\end{array}\right.

Let qq be a function which satisfies

{ (a) q:[g,+]+.(b) There exists Lq>0 such that |q(r1)q(r2)|Lq|r1r2|r1,r2g. (c) (q(r1)q(r2))(r1r2)>0r1,r2g,r1r2. (d) q(g)=0.\left\{\begin{array}[]{l}\text{ (a) }q:[g,+\infty]\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{q}>0\text{ such that }\\ \quad\left|q\left(r_{1}\right)-q\left(r_{2}\right)\right|\leq L_{q}\left|r_{1}-r_{2}\right|\quad\forall r_{1},r_{2}\geq g.\\ \text{ (c) }\left(q\left(r_{1}\right)-q\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)>0\quad\forall r_{1},r_{2}\geq g,r_{1}\neq r_{2}.\\ \text{ (d) }q(g)=0.\end{array}\right.

Also, let μ>0\mu>0 and consider the function pμ:p_{\mu}:\mathbb{R}\rightarrow\mathbb{R} defined by

pμ(r)={p(r) if rg,1μq(r)+p(g) if r>g.p_{\mu}(r)=\left\{\begin{array}[]{cc}p(r)&\text{ if }\quad r\leq g,\\ \frac{1}{\mu}q(r)+p(g)&\text{ if }\quad r>g.\end{array}\right.

Using assumptions (6.1) and (6.2) it follows that the function pμp_{\mu} satisfies condition (6.1), i.e.

{ (a) pμ:+ (b) There exists Lμ>0 such that |pμ(r1)pμ(r2)|Lμ|r1r2|r1,r2 (c) (pμ(r1)pμ(r2))(r1r2)0r1,r2 (d) pμ(r)=0 for all r<0\left\{\begin{array}[]{l}\text{ (a) }p_{\mu}:\mathbb{R}\rightarrow\mathbb{R}_{+}\text{. }\\ \text{ (b) There exists }L_{\mu}>0\text{ such that }\\ \quad\left|p_{\mu}\left(r_{1}\right)-p_{\mu}\left(r_{2}\right)\right|\leq L_{\mu}\left|r_{1}-r_{2}\right|\quad\forall r_{1},r_{2}\in\mathbb{R}\text{. }\\ \text{ (c) }\left(p_{\mu}\left(r_{1}\right)-p_{\mu}\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\quad\forall r_{1},r_{2}\in\mathbb{R}\text{. }\\ \text{ (d) }p_{\mu}(r)=0\text{ for all }r<0\text{. }\end{array}\right.

With these preliminaries, we consider the following contact problem.
Problem 𝒫μ\mathcal{P}_{\mu}. Find a displacement field 𝒖μ:Ω×+d\boldsymbol{u}_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field σμ:Ω×+𝕊d\sigma_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that, for all t+t\in\mathbb{R}_{+},

𝝈μ(t)=𝒜𝜺(𝒖μ(t))+0t(ts)𝜺(𝒖μ(s)))ds in ΩDiv𝝈μ(t)+𝒇0(t)=𝟎 in Ω𝒖μ(t)=𝟎 on Γ1𝝈μ(t)𝝂=𝒇2(t) on Γ2σμν(t)=pμ(uμν(t))+0tb(ts)uμν+(s)𝑑s on Γ3𝝈μτ(t)=𝟎 on Γ3\begin{array}[]{rcc}\left.\boldsymbol{\sigma}_{\mu}(t)=\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(s)\right)\right)ds&\text{ in }\quad\Omega\\ \operatorname{Div}\boldsymbol{\sigma}_{\mu}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}&\text{ in }\quad\Omega\\ \boldsymbol{u}_{\mu}(t)=\mathbf{0}&\text{ on }\quad\Gamma_{1}\\ \boldsymbol{\sigma}_{\mu}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)&\text{ on }\quad\Gamma_{2}\\ -\sigma_{\mu\nu}(t)=p_{\mu}\left(u_{\mu\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\mu\nu}^{+}(s)ds&\text{ on }\quad\Gamma_{3}\\ \boldsymbol{\sigma}_{\mu\tau}(t)=\mathbf{0}&\text{ on }\quad\Gamma_{3}\end{array}

Note that here and below uμνu_{\mu\nu} is the normal component of the displacement field 𝒖μ\boldsymbol{u}_{\mu} and σμν,𝝈μτ\sigma_{\mu\nu},\boldsymbol{\sigma}_{\mu\tau} represent the normal and tangential components of the stress tensor 𝝈μ\boldsymbol{\sigma}_{\mu}, respectively. The equations and boundary conditions in problem (6.5)-(6.10) have a similar interpretations as those in problem (3.1)-(3.6). The difference arises in the fact that here we replace the contact condition with normal compliance, memory term and unilateral constraint (3.5) with the contact condition with normal compliance and memory term (6.9). In this condition μ\mu represents a penalization parameter which may be interpreted as a deformability coefficient of the foundation, and then 1μ\frac{1}{\mu} is the surface stiffness coefficient. Indeed, when μ\mu is smaller the reaction force of the foundation to penetration is larger and so the same force will result in a smaller penetration, which means that the foundation is less deformable. When μ\mu is larger the reaction force of the foundation to penetration is smaller, and so the foundation is less stiff and more deformable.

Assume now that (4.1), (4.2), (4.4), (4.5), (6.1) and (6.2) hold. Then using arguments similar to those used in the study of Problem 𝒫\mathcal{P} we obtain the following variational formulation of Problem 𝒫μ\mathcal{P}_{\mu}.

Problem 𝒫μV\mathcal{P}_{\mu}^{V}. Find a displacement field 𝒖μ:+V\boldsymbol{u}_{\mu}:\mathbb{R}_{+}\rightarrow V such that the equality below holds, for all t+t\in\mathbb{R}_{+}:

(𝒜𝜺(𝒖μ(t)),𝜺(𝒗))Q+(0t(ts)𝜺(𝒖μ(s))𝑑s,𝜺(𝒗))Q\displaystyle\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(s)\right)ds,\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q} (6.11)
+(pμ(uμν(t)),vν)L2(Γ3)+(0tb(ts)uμν+(s)ds,vν))L2(Γ3)\displaystyle\left.+\left(p_{\mu}\left(u_{\mu\nu}(t)\right),v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(\int_{0}^{t}b(t-s)u_{\mu\nu}^{+}(s)ds,v_{\nu}\right)\right)_{L^{2}\left(\Gamma_{3}\right)}
=(𝒇0(t),𝒗)L2(Ω)d+(𝒇2(t),𝒗)L2(Γ2)d𝒗V\displaystyle=\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\forall\boldsymbol{v}\in V

Our main result in this section, which states unique solvability of Problem 𝒫μV\mathcal{P}_{\mu}^{V} and describes the behavior of its solution as μ0\mu\rightarrow 0, is the following.

Theorem 6.1 Assume that (4.1), (4.2), (4.4), (4.5), (6.1) and (6.2) hold. Then:

  1. 1.

    For each μ>0\mu>0 Problem 𝒫μV\mathcal{P}_{\mu}^{V} has a unique solution which satisfies 𝒖μC(+;V)\boldsymbol{u}_{\mu}\in C\left(\mathbb{R}_{+};V\right).

  2. 2.

    The solution 𝒖μ\boldsymbol{u}_{\mu} of the Problem 𝒫μV\mathcal{P}_{\mu}^{V} converges to the solution 𝒖\boldsymbol{u} of the Problem 𝒫V\mathcal{P}^{V}, that is

𝒖μ(t)𝒖(t)V0\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0 (6.12)

as μ0\mu\rightarrow 0, for all t+t\in\mathbb{R}_{+}.

The proof of Theorem 6.1 is carried out in several steps that we present in what follows. In the rest of this section we suppose that the assumption of Theorem 6.1 hold and we denote by cc a positive generic constant that may depend on time but does not depend on μ\mu, and whose value may change from line to line. We use notation (4.12), (4.13) and (4.14). Moreover, condition (6.4) allows us to consider the operator Pμ:VVP_{\mu}:V\rightarrow V defined by

(Pμ𝒖,𝒗)V=Γ3pμ(uν)vν𝑑a𝒖,𝒗V\left(P_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}p_{\mu}\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (6.13)

Then, it is easy to see that Problem 𝒫μV\mathcal{P}_{\mu}^{V} is equivalent to the problem of finding a function 𝒖μ:+V\boldsymbol{u}_{\mu}:\mathbb{R}_{+}\rightarrow V such that, for all t+t\in\mathbb{R}_{+},

(𝒜ε(𝒖μ(t)),ε(𝒗))Q+(Pμ𝒖μ(t),𝒗)V+(𝒮𝒖μ(t),𝒗)V\displaystyle\left(\mathcal{A}\varepsilon\left(\boldsymbol{u}_{\mu}(t)\right),\varepsilon(\boldsymbol{v})\right)_{Q}+\left(P_{\mu}\boldsymbol{u}_{\mu}(t),\boldsymbol{v}\right)_{V}+\left(\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{v}\right)_{V} (6.14)
=(𝒇(t),𝒗)V𝒗V.\displaystyle=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V.

For this reason, we start by proving the unique solvability of this variational equation.

Lemma 6.2 There exists a unique solution 𝒖μC(+;V)\boldsymbol{u}_{\mu}\in C\left(\mathbb{R}_{+};V\right) which satisfies (6.14), for all t+t\in\mathbb{R}_{+}.

Proof. We use Theorem 2.1 with K=X=VK=X=V. Let Aμ:VVA_{\mu}:V\rightarrow V be the operator defined by

(Aμ𝒖,𝒗)V=(𝒜ε(𝒖),ε(𝒗))Q+(Pμ𝒖,𝒗)V𝒖,𝒗V,\left(A_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V}=(\mathcal{A}\varepsilon(\boldsymbol{u}),\varepsilon(\boldsymbol{v}))_{Q}+\left(P_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V, (6.15)

We use (4.1), (6.4) and (6.13) to see that AμA_{\mu} is a strongly monotone and Lipschitz continuous operator i.e. it verifies condition (2.6). Therefore, it follows from Theorem 2.1 that there exists a unique function 𝒖μC(+;V)\boldsymbol{u}_{\mu}\in C\left(\mathbb{R}_{+};V\right) which satisfies the inequality

(Aμ𝒖μ(t),𝒗𝒖μ(t))V+(𝒮𝒖μ(t),𝒗𝒖μ(t))V(𝒇(t),𝒗𝒖μ(t))V𝒗V,\begin{gathered}\left(A_{\mu}\boldsymbol{u}_{\mu}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}+\left(\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}\\ \geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}\quad\forall\boldsymbol{v}\in V,\end{gathered}

for all t+t\in\mathbb{R}_{+}. We replace 𝒗\boldsymbol{v} with 𝒖μ(t)±𝒗\boldsymbol{u}_{\mu}(t)\pm\boldsymbol{v} to see that the previous inequality is equivalent to the variational equation

(A𝒖μ(t),𝒗)V+(𝒮𝒖μ(t),𝒗)V=(𝒇(t),𝒗)V𝒗V,\left(A\boldsymbol{u}_{\mu}(t),\boldsymbol{v}\right)_{V}+\left(\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{v}\right)_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V,

for all t+t\in\mathbb{R}_{+}. Therefore, using (6.15) we deduce that that there exists a unique function 𝒖μC(+;V)\boldsymbol{u}_{\mu}\in C\left(\mathbb{R}_{+};V\right) which satisfies the inequality (6.14) for all t+t\in\mathbb{R}_{+}, which concludes the proof.

In the second step we consider the auxiliary problem of finding a displacement field 𝒖~μ:+V\tilde{\boldsymbol{u}}_{\mu}:\mathbb{R}_{+}\rightarrow V such that, for all t+t\in\mathbb{R}_{+},

(𝒜ε(𝒖~μ(t)),ε(𝒗))Q+(Pμ𝒖~μ(t),𝒗)V+(𝒮𝒖(t),𝒗)V\displaystyle\left(\mathcal{A}\varepsilon\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\varepsilon(\boldsymbol{v})\right)_{Q}+\left(P_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}\right)_{V}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V} (6.16)
=(𝒇(t),𝒗)V𝒗V.\displaystyle=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V.

Note that the difference between problems (6.14) and (6.16) arises in the fact that in (6.16) the operator 𝒮\mathcal{S} is applied to a known function. We have the following existence and uniqueness result.

Lemma 6.3 There exists a unique solution 𝒖~μC(+;V)\tilde{\boldsymbol{u}}_{\mu}\in C\left(\mathbb{R}_{+};V\right) which satisfies (6.16), for all t+t\in\mathbb{R}_{+}.

Proof. Besides the operator Aμ:VVA_{\mu}:V\rightarrow V defined by (6.15) we define the function 𝒇~:+V\tilde{\boldsymbol{f}}:\mathbb{R}_{+}\rightarrow V by equality

(𝒇~(t),𝒗)V=(𝒇(t),𝒗)V(𝒮𝒖(t),𝒗)V𝒗V,t+(\tilde{\boldsymbol{f}}(t),\boldsymbol{v})_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}-(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (6.17)

and we note that assumptions on 𝒇0,𝒇2,\boldsymbol{f}_{0},\boldsymbol{f}_{2},\mathcal{B} and bb yield

f~C(+;V).\tilde{f}\in C\left(\mathbb{R}_{+};V\right). (6.18)

Let t+t\in\mathbb{R}_{+}. Based on (6.15) and (6.17), it is easy to see that (6.16) is equivalent to equality

Aμ𝒖~μ(t)=𝒇~(t).A_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t)=\tilde{\boldsymbol{f}}(t). (6.19)

Recall that AμA_{\mu} is a strongly monotone and Lipschitz continuous operator. Therefore, by standard arguments we deduce the existence of a unique function 𝒖~μC(+;V)\tilde{\boldsymbol{u}}_{\mu}\in C\left(\mathbb{R}_{+};V\right) such that (6.19) holds for all t+t\in\mathbb{R}_{+}, which concludes the proof.

We proceed with the following convergence result.
Lemma 6.4 As μ0\mu\rightarrow 0,

𝒖~μ(t)𝒖(t) in V,\tilde{\boldsymbol{u}}_{\mu}(t)\rightharpoonup\boldsymbol{u}(t)\quad\text{ in }V,

for all t+t\in\mathbb{R}_{+}.
Proof. Let t+t\in\mathbb{R}_{+}. We take 𝒗=𝒖~μ(t)\boldsymbol{v}=\tilde{\boldsymbol{u}}_{\mu}(t) in (6.16) to obtain

(𝒜𝜺\displaystyle(\mathcal{A}\boldsymbol{\varepsilon} (𝒖~μ(t)),𝜺(𝒖~μ(t)))Q+(Pμ𝒖~μ(t),𝒖~μ(t))V\displaystyle\left.\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(P_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t),\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (6.20)
+(𝒮𝒖(t),𝒖~μ(t))V=(𝒇(t),𝒖~μ(t))V\displaystyle+\left(\mathcal{S}\boldsymbol{u}(t),\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}=\left(\boldsymbol{f}(t),\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

On the other hand, the properties (6.4) of the function pμp_{\mu} yield

(Pμ𝒖~μ(t),𝒖~μ(t))V0\left(P_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t),\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq 0 (6.21)

We combine (6.20), (6.21) and use (4.1) to obtain that

𝒖~μ(t)Vc(𝒇(t)V+𝒮𝒖(t)V+𝒜𝟎Q)\left\|\tilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq c\left(\|\boldsymbol{f}(t)\|_{V}+\|\mathcal{S}\boldsymbol{u}(t)\|_{V}+\|\mathcal{A}\mathbf{0}\|_{Q}\right) (6.22)

This inequality shows that the sequence {𝒖~μ(t)}μV\left\{\tilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}\subset V is bounded. Hence, there exists a subsequence of the sequence {𝒖~μ(t)}μ\left\{\tilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}, still denoted {𝒖~μ(t)}μ\left\{\tilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}, and an element 𝒖~(t)V\tilde{\boldsymbol{u}}(t)\in V such that

𝒖~μ(t)𝒖~(t) in V.\tilde{\boldsymbol{u}}_{\mu}(t)\rightharpoonup\tilde{\boldsymbol{u}}(t)\quad\text{ in }V. (6.23)

It follows from (6.20) that

(Pμ𝒖~μ(t),𝒖~μ(t))V=(𝒇(t),𝒖~μ(t))V(𝒜𝜺(𝒖~μ(t)),𝜺(𝒖~μ(t)))Q(𝒮𝒖(t),𝒖~μ(t))V\left(P_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t),\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}=\left(\boldsymbol{f}(t),\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}-\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}-\left(\mathcal{S}\boldsymbol{u}(t),\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

and, since {𝒖~μ(t)}μ\left\{\tilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu} is a bounded sequence in VV, using (4.1) we deduce that

(Pμ𝒖~μ(t),𝒖~μ(t))Vc\left(P_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t),\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\leq c

This implies that

Γ3pμ(u~μν(t))u~μν(t)𝑑ac\int_{\Gamma_{3}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\tilde{u}_{\mu\nu}(t)da\leq c

and, since pμp_{\mu} and gg are positive, it follows that

Γ3pμ(u~μν(t))(u~μν(t)g)𝑑ac\int_{\Gamma_{3}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\left(\tilde{u}_{\mu\nu}(t)-g\right)da\leq c (6.24)

We consider now the measurable subsets of Γ3\Gamma_{3} defined by

Γ31={𝒙Γ3:u~μν(t)(𝒙)g},Γ32={𝒙Γ3:u~μν(t)(𝒙)>g}\Gamma_{31}=\left\{\boldsymbol{x}\in\Gamma_{3}:\tilde{u}_{\mu\nu}(t)(\boldsymbol{x})\leq g\right\},\quad\Gamma_{32}=\left\{\boldsymbol{x}\in\Gamma_{3}:\tilde{u}_{\mu\nu}(t)(\boldsymbol{x})>g\right\} (6.25)

Clearly, both Γ31\Gamma_{31} and Γ32\Gamma_{32} depend on tt and μ\mu but, for simplicity, we do not indicate explicitly this dependence. We use (6.24) to write

Γ31pμ(u~μν(t))(u~μν(t)g)𝑑a+Γ32pμ(u~μν(t))(u~μν(t)g)𝑑ac\int_{\Gamma_{31}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\left(\tilde{u}_{\mu\nu}(t)-g\right)da+\int_{\Gamma_{32}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\left(\tilde{u}_{\mu\nu}(t)-g\right)da\leq c

and, since

Γ31pμ(u~μν(t))u~μν(t)𝑑a0\int_{\Gamma_{31}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\tilde{u}_{\mu\nu}(t)da\geq 0

we obtain

Γ32pμ(u~μν(t))(u~μν(t)g)𝑑aΓ31pμ(u~μν(t))g𝑑a+c\int_{\Gamma_{32}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\left(\tilde{u}_{\mu\nu}(t)-g\right)da\leq\int_{\Gamma_{31}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)gda+c

Thus, taking into account that pμ(r)=p(r)p_{\mu}(r)=p(r) for rgr\leq g, by the monotonicity of the function pp we can write

Γ32pμ(u~μν(t))(u~μν(t)g)𝑑aΓ31p(u~μν)g𝑑a+cΓ3p(g)g𝑑a+c\int_{\Gamma_{32}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\left(\tilde{u}_{\mu\nu}(t)-g\right)da\leq\int_{\Gamma_{31}}p\left(\tilde{u}_{\mu\nu}\right)gda+c\leq\int_{\Gamma_{3}}p(g)gda+c

Therefore, we deduce that

Γ32pμ(u~μν(t))(u~μν(t)g)𝑑ac\int_{\Gamma_{32}}p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\left(\tilde{u}_{\mu\nu}(t)-g\right)da\leq c (6.26)

We use now the definitions (6.3) and (6.25) to see that

pμ(u~μν(t))=1μq(u~μν(t))+p(g),p(g)(u~μν(t)g)0 a.e. on Γ32p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)=\frac{1}{\mu}q\left(\tilde{u}_{\mu\nu}(t)\right)+p(g),\quad p(g)\left(\tilde{u}_{\mu\nu}(t)-g\right)\geq 0\quad\text{ a.e. on }\Gamma_{32}\text{. }

Consequently, the inequality (6.26) yields

Γ32q(u~μν(t))(u~μν(t)g)𝑑acμ\int_{\Gamma_{32}}q\left(\tilde{u}_{\mu\nu}(t)\right)\left(\tilde{u}_{\mu\nu}(t)-g\right)da\leq c\mu (6.27)

Next, we consider the function defined by

p~:+p~(r)={0 if rgq(r) if r>g\tilde{p}:\mathbb{R}\rightarrow\mathbb{R}_{+}\quad\tilde{p}(r)=\left\{\begin{array}[]{cl}0&\text{ if }\quad r\leq g\\ q(r)&\text{ if }\quad r>g\end{array}\right.

and we note that by (6.2) it follows that p~\tilde{p} is a continuous increasing function and, moreover,

p~(r)=0 iff rg.\tilde{p}(r)=0\quad\text{ iff }\quad r\leq g. (6.28)

We use (6.27), equality q(u~μν(t))=p~(u~μν(t))q\left(\tilde{u}_{\mu\nu}(t)\right)=\tilde{p}\left(\tilde{u}_{\mu\nu}(t)\right) a.e. on Γ32\Gamma_{32} and (6.25) to deduce that

Γ3p~(u~μν(t))(u~μν(t)g)+cμ\int_{\Gamma_{3}}\tilde{p}\left(\tilde{u}_{\mu\nu}(t)\right)\left(\tilde{u}_{\mu\nu}(t)-g\right)^{+}\leq c\mu

where, recall, (u~μν(t)g)+\left(\tilde{u}_{\mu\nu}(t)-g\right)^{+}denotes the positive part of u~μν(t)g\tilde{u}_{\mu\nu}(t)-g. Therefore, passing to the limit as μ0\mu\rightarrow 0, using (6.23) as well as compactness of the trace operator we find that

Γ3p~(u~ν(t))(u~ν(t)g)+𝑑a0\int_{\Gamma_{3}}\tilde{p}\left(\tilde{u}_{\nu}(t)\right)\left(\tilde{u}_{\nu}(t)-g\right)^{+}da\leq 0

Since the integrand p~(u~ν(t))(u~ν(t)g)+\tilde{p}\left(\tilde{u}_{\nu}(t)\right)\left(\tilde{u}_{\nu}(t)-g\right)^{+}is positive a.e. on Γ3\Gamma_{3}, the last inequality yields

p~(u~ν(t))(u~ν(t)g)+=0 a.e. on Γ3\tilde{p}\left(\tilde{u}_{\nu}(t)\right)\left(\tilde{u}_{\nu}(t)-g\right)^{+}=0\text{ a.e. on }\Gamma_{3}

and, using (6.28) and definition (4.6) we conclude that

𝒖~(t)U\tilde{\boldsymbol{u}}(t)\in U (6.29)

Next, we test in (6.16) with 𝒗𝒖~μ(t)\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t), where 𝒗U\boldsymbol{v}\in U, to obtain

(𝒜𝜺(𝒖~μ(t)),𝜺(𝒗)𝜺(𝒖~μ(t)))V+(Pμ𝒖~μ(t),𝒗𝒖~μ(t))V\displaystyle\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{V}+\left(P_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (6.30)
+(𝒮𝒖(t),𝒗𝒖~μ(t))V=(𝒇(t),𝒗𝒖~μ(t))V\displaystyle\quad+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}=\left(\boldsymbol{f}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

Since 𝒗U\boldsymbol{v}\in U we have pμ(vν)=p(vν)p_{\mu}\left(v_{\nu}\right)=p\left(v_{\nu}\right) a.e. on Γ3\Gamma_{3}. Thus, taking into account the monotonicity of the function pμp_{\mu} yields

p(vν)(vνu~μν(t))pμ(u~μν(t))(vνu~μν(t)) a.e. on Γ3p\left(v_{\nu}\right)\left(v_{\nu}-\tilde{u}_{\mu\nu}(t)\right)\geq p_{\mu}\left(\tilde{u}_{\mu\nu}(t)\right)\left(v_{\nu}-\tilde{u}_{\mu\nu}(t)\right)\text{ a.e. on }\Gamma_{3}

and, therefore, we obtain

(P𝒗,𝒗𝒖~μ(t))V(Pμ𝒖~μ(t),𝒗𝒖~μ(t))V\left(P\boldsymbol{v},\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq\left(P_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (6.31)

Then, using (6.31) and (6.30) we find that

(𝒜ε(𝒖~μ(t)),ε(𝒗)𝜺(𝒖~μ(t)))Q+(P𝒗,𝒗𝒖~μ(t))V\displaystyle\left(\mathcal{A}\varepsilon\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\varepsilon(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(P\boldsymbol{v},\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (6.32)
+(𝒮𝒖(t),𝒗𝒖~μ(t))V(𝒇(t),𝒗𝒖~μ(t))V𝒗U\displaystyle\quad+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\quad\forall\boldsymbol{v}\in U

We take 𝒗=𝒖~(t)\boldsymbol{v}=\tilde{\boldsymbol{u}}(t) in (6.32) to obtain

(𝒜𝜺(𝒖~μ(t)),𝜺(𝒖~μ(t))𝜺(𝒖~(t)))Q(P𝒖~(t),𝒖~(t)𝒖~μ(t))V\displaystyle\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)-\boldsymbol{\varepsilon}(\tilde{\boldsymbol{u}}(t))\right)_{Q}\leq\left(P\tilde{\boldsymbol{u}}(t),\tilde{\boldsymbol{u}}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (6.33)
+(𝒮𝒖(t),𝒖~(t)𝒖~μ(t))V+(𝒇(t),𝒖~μ(t)𝒖~(t))V\displaystyle+\left(\mathcal{S}\boldsymbol{u}(t),\tilde{\boldsymbol{u}}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}+\left(\boldsymbol{f}(t),\tilde{\boldsymbol{u}}_{\mu}(t)-\tilde{\boldsymbol{u}}(t)\right)_{V}

and, passing to the upper limit as μ0\mu\rightarrow 0, by (6.23) we find that

lim supμ0(𝒜𝜺(𝒖~μ(t)),𝜺(𝒖~μ(t))𝜺(𝒖~(t)))Q0\limsup_{\mu\rightarrow 0}\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)-\boldsymbol{\varepsilon}(\tilde{\boldsymbol{u}}(t))\right)_{Q}\leq 0

Therefore, by a pseudomonotonicity argument is follows that

lim infμ0\displaystyle\liminf_{\mu\rightarrow 0} (𝒜𝜺(𝒖~μ(t)),𝜺(𝒖~μ(t))𝜺(𝒗))Q\displaystyle\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q} (6.34)
(𝒜𝜺(𝒖~(t)),𝜺(𝒖~(t))𝜺(𝒗))Q𝒗V\displaystyle\geq(\mathcal{A}\boldsymbol{\varepsilon}(\tilde{\boldsymbol{u}}(t)),\boldsymbol{\varepsilon}(\tilde{\boldsymbol{u}}(t))-\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}\quad\forall\boldsymbol{v}\in V

We use now (6.32) to see that

(P𝒗,𝒗𝒖~μ(t))V+(𝒮𝒖(t),𝒗𝒖~μ(t))V+(𝒇(t),𝒖~μ(t)𝒗)V\displaystyle\left(P\boldsymbol{v},\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}+\left(\boldsymbol{f}(t),\tilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{v}\right)_{V}
(𝒜𝜺(𝒖~μ(t)),𝜺(𝒖~μ(t))𝜺(𝒗))Q𝒗U\displaystyle\quad\geq\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}\quad\forall\boldsymbol{v}\in U

then we pass to the lower limit in this inequality and use (6.34) and (6.23) to find that

(𝒜𝜺(𝒖~(t)),𝜺(𝒗)𝜺(𝒖~(t)))Q+(P𝒗,𝒗𝒖~(t))V\displaystyle(\mathcal{A}\boldsymbol{\varepsilon}(\tilde{\boldsymbol{u}}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\tilde{\boldsymbol{u}}(t)))_{Q}+(P\boldsymbol{v},\boldsymbol{v}-\tilde{\boldsymbol{u}}(t))_{V} (6.35)
+(𝒮𝒖(t),𝒗𝒖~(t))V(𝒇(t),𝒗𝒖~(t))V𝒗U.\displaystyle\quad+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}(t))_{V}\geq(\boldsymbol{f}(t),\boldsymbol{v}-\tilde{\boldsymbol{u}}(t))_{V}\quad\forall\boldsymbol{v}\in U.

Next, we take 𝒗=𝒖(t)\boldsymbol{v}=\boldsymbol{u}(t) in (6.35) and 𝒗=𝒖~(t)\boldsymbol{v}=\tilde{\boldsymbol{u}}(t) in (4.15). Then, adding the resulting inequalities we obtain

(𝒜𝜺(𝒖~(t))𝒜𝜺(𝒖(t)),𝜺(𝒖~(t)𝜺(𝒖(t)))Q0\left(\mathcal{A}\boldsymbol{\varepsilon}(\tilde{\boldsymbol{u}}(t))-\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\tilde{\boldsymbol{u}}(t)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}\leq 0\right.

This inequality combined with (4.1) implies that

𝒖~(t)=𝒖(t)\tilde{\boldsymbol{u}}(t)=\boldsymbol{u}(t)

It follows from here that the whole sequence {𝒖~μ(t)}μ\left\{\tilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu} is weakly convergent to the element 𝒖(t)V\boldsymbol{u}(t)\in V, which concludes the proof.

We proceed with the following strong convergence result.
Lemma 6.5 As μ0\mu\rightarrow 0,

𝒖~μ(t)𝒖(t)V0\left\|\tilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0

for all t+t\in\mathbb{R}_{+}.
Proof. Let t+t\in\mathbb{R}_{+}. Using (4.1) we write

m𝒜𝒖~μ(t)𝒖(t)V2(𝒜𝜺(𝒖~μ(t))𝒜𝜺(𝒖(t)),𝜺(𝒖~μ(t))𝜺(𝒖(t)))Q\displaystyle m_{\mathcal{A}}\left\|\tilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}\leq\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)-\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q}
=(𝒜𝜺(𝒖(t)),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q(𝒜𝜺(𝒖~μ(t)),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q\displaystyle\quad=\left(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}-\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}

Next, we take 𝒗=𝒖(t)\boldsymbol{v}=\boldsymbol{u}(t) in (6.32) to obtain

(𝒜𝜺(𝒖~μ(t)),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q(P𝒖(t),𝒖(t)𝒖~μ(t))V+(𝒮𝒖(t),𝒖(t)𝒖~μ(t)))V(𝒇(t),𝒖(t)𝒖~μ(t))V\begin{gathered}-\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\leq\left(P\boldsymbol{u}(t),\boldsymbol{u}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\\ \left.+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{u}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{V}-\left(\boldsymbol{f}(t),\boldsymbol{u}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\end{gathered}

and, combining the previous two inequalities, we find that

m𝒜𝒖~μ(t)𝒖(t)V2(𝒜𝜺(𝒖(t)),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q+(P𝒖(t),𝒖(t)𝒖~μ(t))V\displaystyle m_{\mathcal{A}}\left\|\tilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}\leq\left(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(P\boldsymbol{u}(t),\boldsymbol{u}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}
+(𝒮𝒖(t),𝒖(t)𝒖~(t))V(𝒇(t),𝒖(t)𝒖~μ(t))V\displaystyle\quad+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{u}(t)-\tilde{\boldsymbol{u}}(t))_{V}-\left(\boldsymbol{f}(t),\boldsymbol{u}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

We pass to the upper limit in this inequality and use Lemma 6.4 to conclude that 𝒖~μ(t)𝒖(t)\tilde{\boldsymbol{u}}_{\mu}(t)\rightarrow\boldsymbol{u}(t) in VV, as μ0\mu\rightarrow 0.

We are now in position to provide the proof of Theorem 6.1.
Proof. 1) Is easy to see that Problem 𝒫μV\mathcal{P}_{\mu}^{V} is equivalent to the problem of finding a function 𝒖μ:+V\boldsymbol{u}_{\mu}:\mathbb{R}_{+}\rightarrow V such that, for all t+t\in\mathbb{R}_{+}, (6.14) holds. Therefore, the existence of a unique solution 𝒖μC(+;V)\boldsymbol{u}_{\mu}\in C\left(\mathbb{R}_{+};V\right) to Problem 𝒫μV\mathcal{P}_{\mu}^{V} is a direct consequence of Lemma 6.2
2) Let t+t\in\mathbb{R}_{+}and let nn\in\mathbb{N}^{*} be such that t[0,n]t\in[0,n]. Let also μ>0\mu>0. Then, testing with 𝒗=𝒖μ(t)𝒖~μ(t)\boldsymbol{v}=\boldsymbol{u}_{\mu}(t)-\tilde{\boldsymbol{u}}_{\mu}(t) in (6.16) and (6.14) we have

(𝒜𝜺(𝒖~μ(t)),𝜺(𝒖μ(t))𝜺(𝒖~μ(t)))Q+(Pμ𝒖~μ(t),𝒖μ(t)𝒖~μ(t))V+(𝒮𝒖(t),𝒖μ(t))𝒖~μ(t))V=(𝒇(t),𝒖μ(t)𝒖~μ(t))V(𝒜𝜺(𝒖μ(t)),𝜺(𝒖μ(t))𝜺(𝒖~μ(t)))V+(Pμ𝒖μ(t),𝒖μ(t)𝒖~μ(t))V+(𝒮𝒖μ(t),𝒖μ(t))𝒖~μ(t))V=(𝒇(t),𝒖μ(t)𝒖~μ(t))V\begin{gathered}\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(P_{\mu}\tilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{u}_{\mu}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\\ \left.+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{u}_{\mu}(t)\right)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}=\left(\boldsymbol{f}(t),\boldsymbol{u}_{\mu}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\\ \left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{V}+\left(P_{\mu}\boldsymbol{u}_{\mu}(t),\boldsymbol{u}_{\mu}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\\ \left.+\left(\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{u}_{\mu}(t)\right)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}=\left(\boldsymbol{f}(t),\boldsymbol{u}_{\mu}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\end{gathered}

We subtract the previous inequalities and use the monotonicity of the operator PμP_{\mu} to deduce that

(𝒜𝜺(𝒖μ(t))𝒜𝜺(𝒖~μ(t)),𝜺(𝒖μ(t))𝜺(𝒖~μ(t)))Q(𝒮𝒖(t)𝒮𝒖μ(t),𝒖μ(t))𝒖~μ(t))V\begin{gathered}\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\mathcal{A}\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\boldsymbol{\varepsilon}\left(\tilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\\ \left.\leq\left(\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{u}_{\mu}(t)\right)-\tilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\end{gathered}

and, therefore,

𝒖μ(t)𝒖~μ(t)V1m𝒜𝒮𝒖(t)𝒮𝒖μ(t)V.\left\|\boldsymbol{u}_{\mu}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq\frac{1}{m_{\mathcal{A}}}\left\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}_{\mu}(t)\right\|_{V}. (6.36)

We combine now (6.36) and with (4.17), (4.18) to find that

𝒖μ(t)𝒖~μ(t)Vrnm𝒜0t𝒖(s)𝒖μ(s)V𝑑s\left\|\boldsymbol{u}_{\mu}(t)-\tilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq\frac{r_{n}}{m_{\mathcal{A}}}\int_{0}^{t}\left\|\boldsymbol{u}(s)-\boldsymbol{u}_{\mu}(s)\right\|_{V}ds

It follows from here that

𝒖μ(t)𝒖(t)V𝒖~μ(t)𝒖(t)V+rnm𝒜0t𝒖μ(s)𝒖(s)V𝑑s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\tilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{A}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds

and, using a Gronwall’s argument, we obtain

𝒖μ(t)𝒖(t)V𝒖~μ(t)𝒖(t)V+rnm𝒜0ternm𝒜(ts)𝒖~μ(s)𝒖(s)V𝑑s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\tilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{A}}}\int_{0}^{t}e^{\frac{r_{n}}{m_{\mathcal{A}}}(t-s)}\left\|\tilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds (6.37)

Note that ernm𝒜(ts)ernm𝒜tenrnm𝒜e^{\frac{r_{n}}{m_{\mathcal{A}}}(t-s)}\leq e^{\frac{r_{n}}{m_{\mathcal{A}}}t}\leq e^{\frac{nr_{n}}{m_{\mathcal{A}}}} for all s[0,t]s\in[0,t] and, therefore, (6.37) yields

𝒖μ(t)𝒖(t)V𝒖~μ(t)𝒖(t)V+rnm𝒜enrnm𝒜0t𝒖~μ(s)𝒖(s)V𝑑s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\tilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{A}}}e^{\frac{nr_{n}}{m_{\mathcal{A}}}}\int_{0}^{t}\left\|\tilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds (6.38)

On the other hand, by estimate (6.22), Lemma 6.5 and Lebesgue’s convergence theorem it follows that

0t𝒖~μ(s)𝒖(s)V𝑑s0 as μ0\int_{0}^{t}\left\|\tilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (6.39)

We use now (6.38), (6.39) and Lemma 6.5 to obtain the convergence (6.12), which concludes the proof.

We extend now the convergence result in Theorem 6.1 to the weak solution of the corresponding contact problems 𝒫\mathcal{P} and 𝒫μ\mathcal{P}{}_{\mu}. Let nn\in\mathbb{N}^{*} be such that t[0,n]t\in[0,n]. Then, using (6.5) and (3.1) we obtain

𝝈μ(t)𝝈(t)\displaystyle\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t) Q𝒜𝜺(𝒖μ(t))𝒜𝜺(𝒖(t))Q\displaystyle\left\|{}_{Q}\leq\right\|\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\|_{Q}
+0t(ts)(𝜺(𝒖μ(t))𝜺(𝒖(t)))Q\displaystyle+\int_{0}^{t}\left\|\mathcal{B}(t-s)\left(\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)\right\|_{Q}

and, using (4.1) and arguments similar to those used to obtain (4.17) it follows that

𝝈μ(t)𝝈(t)Qc𝒖μ(t)𝒖(t))V\displaystyle\left.\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\leq c\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right)\|_{V} (6.40)
+dmaxr[0,n](r)𝐐0t𝒖μ(s)𝒖(s)V𝑑s\displaystyle\quad+d\max_{r\in[0,n]}\|\mathcal{B}(r)\|_{\mathbf{Q}_{\infty}}\int_{0}^{t}\left\|\boldsymbol{u}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds

Moreover, taking 𝒗=𝒖μ(t)\boldsymbol{v}=\boldsymbol{u}_{\mu}(t) in (6.14) and using the monotonicity of PμP_{\mu} and 𝒜\mathcal{A} we find that

𝒖μ(t)Vc(𝒇(t)V+𝑺𝒖μ(t)Q\left\|\boldsymbol{u}_{\mu}(t)\right\|_{V}\leq c\left(\|\boldsymbol{f}(t)\|_{V}+\left\|\boldsymbol{S}\boldsymbol{u}_{\mu}(t)\right\|_{Q}\right.

We use now the property (4.17) of the operator 𝒮\mathcal{S} and the Gronwall argument to see that

𝒖μ(t)Vcn\left\|\boldsymbol{u}_{\mu}(t)\right\|_{V}\leq c_{n} (6.41)

where cnc_{n} is a positive constant which depends on n,n,\mathcal{B} and bb. Then, we use the convergence (6.12), estimate (6.41) and Lebesque’s theorem, again, and pass to the limit in (6.40). As a result we find that

𝝈μ(t)𝝈(t)Q0 as μ0\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (6.42)

Finally, since (4.20) implies that Div𝝈μ(t)=Div𝝈(t)=𝒇0(t)\operatorname{Div}\boldsymbol{\sigma}_{\mu}(t)=\operatorname{Div}\boldsymbol{\sigma}(t)=-\boldsymbol{f}_{0}(t), we conclude that

𝝈μ(t)𝝈(t)Q1=𝝈μ(t)𝝈(t)Q\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q_{1}}=\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}

and, therefore, (6.42) yields

𝝈μ(t)𝝈(t)Q10 as μ0\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q_{1}}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (6.43)

In addition to the mathematical interest in the convergence result (6.12), (6.43), it is important from the mechanical point of view, since it shows that the weak solution of the viscoelastic contact problem with normal compliance memory term and unilateral constraint may be approached as closely as one wishes by the solution of the viscoplastic contact problem with normal compliance and memory term, with a sufficiently small deformability coefficient.

A brief comparison between the convergence results (5.7), (5.28) on one hand, and the convergence results (6.12), (6.43) on the other hand, show that the convergences (5.7), (5.28) hold in the Fréchet spaces C(+;V)C\left(\mathbb{R}_{+};V\right) and C(+;Q1)C\left(\mathbb{R}_{+};Q_{1}\right), respectively, and, in contrast, the convergences (6.12), (6.43) hold in the spaces VV and Q1Q_{1}, respectively, at each t+t\in\mathbb{R}_{+}. This feature arises from the mathematical tools we use on the proof of Theorem 6.1. The extension of (6.12), (6.43) to convergence results on the spaces C(+;V)C\left(\mathbb{R}_{+};V\right) and C(+;Q1)C\left(\mathbb{R}_{+};Q_{1}\right) remain an open problem which deserves to be investigated in the future.

References

[1] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Applied Mathematics and Computations, submitted.
[2] C. Corduneanu, Problèmes globaux dans la théorie des équations intégrales de Volterra, Ann. Math. Pure Appl., 67 (1965), 349-363.
[3] G. Duvaut, J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
[4] C. Eck, J. Jarušek and M. Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics 270, Chapman/CRC Press, New York, 2005.
[5] J. Jarusek and M. Sofonea, On the solvability of dynamic elastic-viscoplastic contact problems, Zeitschrift für Angewandte Matematik und Mechanik (ZAMM), 88 (2008), 3-22.
[6] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, Americal Mathematical Society-International Press, 2002.
[7] N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[8] A. Klarbring, A. Mikelic and M. Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci. 26 (1988), 811-832.
[9] A. Klarbring, A. Mikelič and M. Shillor, On friction problems with normal compliance, Nonlinear Analysis 13 (1989), 935-955.
[10] J.A.C. Martins and M.D.P. Monteiro Marques, eds., Contact Mechanics, Kluwer, Dordrecht, 2002.
[11] J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis TMA 11 (1987), 407-428.
[12] J. J. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London, 1966.
[13] S. Migórski, A. Ochal and M. Sofonea, Analysis of lumped models with contact and friction, Journal of Applied Mathematics and Physics (ZAMP) 62 (2011), 99-113.
[14] J.T. Oden and J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering 52 (1985), 527-634.
[15] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985.
[16] J. Piotrowski, Smoothing dry friction damping by dither generated in rolling contact of wheel and rail and its influence on ride dynamics of freight wagons, Vehicle System Dynamics 48 (2010), 675-703.
[17] A. C. Pipkin. Lectures in Viscoelasticity Theory, Applied Mathematical Sciences 7, George Allen & Unwin Ltd., London, Springer-Verlag, New York, 1972.
[18] M. Raous, M. Jean and J.J. Moreau, Contact Mechanics, Plenum Press, New York, 1995.
[19] A. D. Rodríguez-Arós, M. Sofonea, J. M. Viaño, A class of evolutionary variational inequalities with Volterra-type integral term, Mathematical Models and Methods in Applied Sciences ( M3ASM^{3}AS ) 14 (2004), 555-577.
[20] A. D. Rodríguez-Aros, M. Sofonea and J. M. Viaño, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Nu merische Mathematik 198 (2007), 327-358.
[21] M. Shillor, ed., Recent Advances in Contact Mechanics, Special issue of Math. Comput. Modelling 28 (4-8) (1998).
[22] M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655, Springer, Berlin, 2004.
[23] A. Signorini, Sopra alcune questioni di elastostatica, Atti della Società Italiana per il Progresso delle Scienze, 1933.
[24] M. Sofonea, A. D. Rodríguez-Aros and J. M. Viaño, A class of integro-differential variational inequalities with applications to viscoelastic contact, Mathematical and Computer Modelling 41 (2005), 1355-1369.
[25] M. Sofonea and A. Matei, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics 18, Springer, New York, 2009.
[26] M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in Contact Mechanics, European Journal of Applied Mathematics 22 (2011), 471491.
[27] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Notes, Cambridge University Press, Cambridge, to appear.
[28] C. Truesdell (Ed.), Mechanics of Solids, Vol III : Theory of Viscoelasticity, Plasticity, Elastic Waves and Elastic Stability, Springer-Verlag, Berlin, 1973.
[29] P. Wriggers and U. Nackenhorst, eds., Analysis and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics 27, Springer, Berlin 2006.

Related Posts