Abstract
Authors
Ioannis K. Argyros
(Cameron University, USA)
Emil Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)
Keywords
chord/secant method; semilocal convergence; r-convergence order.
Cite this paper as:
I. Argyros, E. Cătinaş, I. Păvăloiu, Improving the rate of convergence of some Newton-like methods for the solution of nonlinear equations containing a nondifferentiable term, Rev. Anal. Numér. Théor. Approx., 27 (1998) no. 2, pp. 191-202.
Scanned paper: on the journal website.
Latex-pdf version of the paper.
About this paper
Publisher Name
Paper on the journal website
Print ISSN
1222-9024
Online ISSN
2457-8126
MR
?
ZBL
?
Google Scholar citations
[1] K. Argyros, On the solution of equations with nondifferentiable operators and the Ptak error estimates, BIT, 30 (1990), pp. 752-754.
[2] I. K. Argyros, On the solution of nonlinear equations with a nondifferentiable term, Rev. Anal. Numer. Theor. Approx., 22 (1993) 2, pp. 125-135.
[3] I. K. Argyros, On some iterative methods for solving nonlinear equations with a nondifferentiable term of order between 1.618… and 1.839. (submitted to this joumal).
[4] I. K. Arglros, and F. Szidarovszky, The Theory and Application of lteration Method, CRC Press, Inc., Boca Raton, Florida, 1993.
[5] E. Cătinaș, On some iterative methods for solving nonlinear equations, Rev. Anal. Numer. Theor. Approx., 23, I (1994), pp. 47-53.
[6] G. Goldner, and M. Balazs, Remarks on divided differences and method of chords, Rev. Anal. Numer. Theor. Approx., 3, I (1974), pp. 19-30.
[7] L. V. Kantorovich, The method of successive approximation for functional equations, Acta Math. 71 (1939), pp. 63-97.
[8] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
[9] I. Păvăloiu, Sur une generalisation de la methode de Steffensen, Rev. Anal. Numer. Theor. Approx., 21, 1 (1992), pp. 59-65.
[10] I. Păvăloiu, A convergence theorem concerning the chord methods, Rev. Anal. Numer. Theor. Approx., 22, 1 (1993), pp. 83-85.
[11] F. A, Potra, On an iterative algorithm of order 1.839 . . . for solving nonlinear equations, Numer. Funct. Anal. Optimiz. 7, I (1984-1985), pp. 75-106.
[12] T. Yamamoto and X. Chen, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optimiz. 10, 1 and 2 (1989), pp.37-48.