## Abstract

We present a constructive method for solving (1)-(2) under hypotheses (i)-(iv) by assuming that function \(f(t,x)\) is monotone with respect to \(x\). The novelty of this paper is that we adapt the monotone technique to the case of anti-isotone operators, particularly when \(f(t,x)\) is a function nondecreasing in \(x\).

## Authors

**Radu Precup**

Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

## Keywords

?

## Paper coordinates

R. Precup, *Monotone technique to the initial values problem for a delay integral equation from biomathematics*, Studia Univ. Babeş-Bolyai Math. 40 (1995) no. 2, 63-73.

## About this paper

##### Journal

Studia Universitatis ”Babes-Bolyai”, Mathematica

##### Publisher Name

”Babes-Bolyai” University

##### Print ISSN

##### Online ISSN

??

MR: 98a:34067

google scholar link

[1] K.L. Cooke, J.L. Kaplan, *A periodicity thereshold theorem for epidemics and population growth*, Math. Biosc. 31 (1976), 87-104.

[2] D. Guo, V. Lakshmikantham, *Positive solutions of nonlinear integral equation arising in infectious diseases, * J. Math. Anal. Appl. 134 (1988), 1-8.

[3] R. Precup, *Positive solutions of the initial value problem for an integral equation modeling infectious disease, *”Babeș-Bolyai” Univ. Faculty of Math,., Preprint nr.3, 1991, 25*–*30.*
*[4] R. Precup,

*Periodic solutions for an integral equation from biomathematics via the Leray-Schauder principle*, Studia Universitatis ”Babeș-Bolyai” (Mathematica) 39, no.1 (1994).

*[5] I.A. Rus,*

*A delay integral equation from biomathematics,*”Babeș-Bolyai” Univ, Faculty of Math., Preprint nr.3, 1989, 87-90.

*[6] L.R. Williams, R.W. Leggett,*

*Nonzero solutions of nonlinear integral equations modeling infectious disease,*SIAM J. Math. Anal. 13 (1982), 112-121.