Numerical solutions of Lotka-Volterra system with delay by spline functions of even degree

Abstract

Authors

D. Otrocol
Institutul de Calcul

Keywords

?

Paper coordinates

D. Otrocol, Numerical solutions of Lotka-Volterra system with delay by spline functions of even degree, Studia Univ. Babeş-Bolyai, Mathematica, Vol 51, no. 4, 167-180, 2006.

PDF

About this paper

Journal

Studia

Publisher Name

Babes-Bolyai University, Romania

Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

NUMERICAL SOLUTIONS OF LOTKA-VOLTERRA SYSTEM WITH DELAY BY SPLINE FUNCTIONS OF EVEN DEGREE

DIANA OTROCOL
Dedicated to Professor Gheorghe Coman at his 70th 70^{\text{th }} anniversary
Abstract

This paper presents a numerical method for the approximate solution of a Lotka-Volterra system with delay. This method is essentially based on the natural spline functions of even degree introduced by using the derivative-interpolating conditions on simple knots.

1. Introduction

In recent years many papers were devoted to the problem of approximate integration of system of differential equation by spline functions. The theory of spline functions presents a special interest and advantage in obtaining numerical solutions of differential equations.

The splines functions of even degree are defined in a similar manner with that for odd degree spline functions, but using the derivative-interpolating conditions. These spline functions preserve all the remarkable extremal and convergence properties of the odd degree splines, and are very suitable for the numerical solutions of the differential equation problems, especially for the delay differential equations with initial conditions.

In this paper we consider a spline approximation method for the numerical solution of a Lotka-Volterra system with delay. The purpose of the present study is to extend the results of [1], [2], [3], [5] from the delay differential equations to the delay

00footnotetext: Received by the editors: 02.02.2006.
2000 Mathematics Subject Classification. 34A34, 41A15.
Key words and phrases. natural spline function, derivative-interpolating function, delay differential system.
This work has been supported by MEdC-ANCS under grant ET 3233/17.10.2005.

DIANA OTROCOL

differential system. In the same manner we shall develop some theory and algorithms for the numerical solutions of a class of delay Lotka-Volterra system.

2. Basic definitions and properties of even degree splines

Let Δn\Delta_{n} be the following partition of the real axis

Δn:=t0<a=t1<<tn=b<tn+1=+\Delta_{n}:-\infty=t_{0}<a=t_{1}<\ldots<t_{n}=b<t_{n+1}=+\infty

and let m,nm,n be two given natural numbers, satisfying the conditions n1,mn+1n\geq 1,m\leq n+1. One denotes by IkI_{k} the following subintervals

Ik:=[tk,tk+1[,k=1,n¯,I0:=]t0,t1[.I_{k}:=\left[t_{k},t_{k+1}\left[,k=\overline{1,n},I_{0}:=\right]t_{0},t_{1}[.\right.

Definition 1. [3] For the couple ( m,Δnm,\Delta_{n} ) a function s:s:\mathbb{R}\rightarrow\mathbb{R} is called a natural spline function of even degree 2m2m if the following conditions are satisfied:

10sC2m1()\displaystyle 1^{0}s\in C^{2m-1}(\mathbb{R})
20s|Ik𝒫2m,k=1,n¯\displaystyle\left.2^{0}s\right|_{I_{k}}\in\mathcal{P}_{2m},k=\overline{1,n}
30s|I0𝒫m,s|In𝒫m\displaystyle\left.3^{0}s\right|_{I_{0}}\in\mathcal{P}_{m},\left.s\right|_{I_{n}}\in\mathcal{P}_{m}

where 𝒫k\mathcal{P}_{k} represents the set of algebraic polynomials of degree k\leq k.
We denote by 𝒮2m(Δn)\mathcal{S}_{2m}\left(\Delta_{n}\right) the linear space of natural polynomial splines of even degree 2m2m with the simple knots t1,,tnt_{1},\ldots,t_{n}.

We now show that 𝒮2m(Δm)\mathcal{S}_{2m}\left(\Delta_{m}\right) is a finite dimensional linear space of functions and we give a basis of it.

Theorem 1. [3] Any element s𝒮2m(Δn)s\in\mathcal{S}_{2m}\left(\Delta_{n}\right) has the following representation

s(t)=i=0mAiti+k=1nak(ttk)+2ms(t)=\sum_{i=0}^{m}A_{i}t^{i}+\sum_{k=1}^{n}a_{k}\left(t-t_{k}\right)_{+}^{2m}

where the real coefficients (Ai)0m\left(A_{i}\right)_{0}^{m} are arbitrary, and the coefficients (ak)1n\left(a_{k}\right)_{1}^{n} satisfy the conditions

k=1naktki=0,i=0,m1¯\sum_{k=1}^{n}a_{k}t_{k}^{i}=0,i=\overline{0,m-1}

Remark 1. [3] If n+1=mn+1=m, then ak=0,k=1,n¯a_{k}=0,k=\overline{1,n}.

Theorem 2. [3] Suppose that n+1mn+1\geq m, and let f:[t1,tn]f:\left[t_{1},t_{n}\right]\rightarrow\mathbb{R} be a given function such that f(tk)=yk,k=1,n¯f^{\prime}\left(t_{k}\right)=y_{k}^{\prime},k=\overline{1,n}, and f(t1)=y1f\left(t_{1}\right)=y_{1}, where yk,k=1,n¯y_{k}^{\prime},k=\overline{1,n}, and y1y_{1} are given real numbers. Then there exists a unique spline function sf𝒮2m(Δn)s_{f}\in\mathcal{S}_{2m}\left(\Delta_{n}\right), such that the following derivative-interpolating conditions

sf(t1)=y1\displaystyle s_{f}\left(t_{1}\right)=y_{1} (2.1)
sf(tk)=yk,k=1,n¯\displaystyle s_{f}^{\prime}\left(t_{k}\right)=y_{k}^{\prime},k=\overline{1,n} (2.2)

hold.
Corollary 1. [3] There exists a unique set of n+1n+1 fundamental natural polynomial spline functions Sk𝒮2m(Δn),k=1,n¯S_{k}\in\mathcal{S}_{2m}\left(\Delta_{n}\right),k=\overline{1,n}, and s0𝒮2m(Δn)s_{0}\in\mathcal{S}_{2m}\left(\Delta_{n}\right) satisfying the conditions:

s0(t1)=1,s0(tk)=0,k=1,n¯Sk(t1)=0,Sk(ti)=δik,i,k=1,n¯\begin{array}[]{ll}s_{0}\left(t_{1}\right)=1,&s_{0}^{\prime}\left(t_{k}\right)=0,\quad k=\overline{1,n}\\ S_{k}\left(t_{1}\right)=0,&S_{k}^{\prime}\left(t_{i}\right)=\delta_{ik},\end{array}i,k=\overline{1,n}

It is clear that the functions {s0,Sk,k=1,n¯}\left\{s_{0},S_{k},k=\overline{1,n}\right\}, form a basis of the linear space 𝒮2m(Δn)\mathcal{S}_{2m}\left(\Delta_{n}\right), and for sfs_{f} we obtain the representation

sf(t)=s0(t)f(t1)+k=1nSk(t)f(tk)s_{f}(t)=s_{0}(t)f\left(t_{1}\right)+\sum_{k=1}^{n}S_{k}(t)f^{\prime}\left(t_{k}\right)

But because s0(t)=1s_{0}(t)=1, it follows that

sf(t)=f(t1)+k=1nSk(t)f(tk)s_{f}(t)=f\left(t_{1}\right)+\sum_{k=1}^{n}S_{k}(t)f^{\prime}\left(t_{k}\right)

Let us introduce the following sets of functions

W2m+1(Δn)\displaystyle W_{2}^{m+1}\left(\Delta_{n}\right) :={g:[a,b]g(m) abs.cont.on Ik and g(m+1)L2[a,b]},\displaystyle=\left\{g:[a,b]\rightarrow\mathbb{R}\mid g^{(m)}\text{ abs.cont.on }I_{k}\text{ and }g^{(m+1)}\in L_{2}[a,b]\right\},
W2m+1[a,b]\displaystyle W_{2}^{m+1}[a,b] :={g:[a,b]g(m) abs.cont.on [a,b] and g(m+1)L2[a,b]},\displaystyle=\left\{g:[a,b]\rightarrow\mathbb{R}\mid g^{(m)}\text{ abs.cont.on }[a,b]\text{ and }g^{(m+1)}\in L_{2}[a,b]\right\},
W0,fm+1(Δn)\displaystyle W_{0,f}^{m+1}\left(\Delta_{n}\right) :={gW2m+1(Δn)g(tk)=f(tk),k=1,n¯},\displaystyle=\left\{g\in W_{2}^{m+1}\left(\Delta_{n}\right)\mid g^{\prime}\left(t_{k}\right)=f^{\prime}\left(t_{k}\right),k=\overline{1,n}\right\},
W2,fm+1(Δn)\displaystyle W_{2,f}^{m+1}\left(\Delta_{n}\right) :={gW2m+1(Δn)g(t0)=f(t0)}.\displaystyle=\left\{g\in W_{2}^{m+1}\left(\Delta_{n}\right)\mid g\left(t_{0}\right)=f\left(t_{0}\right)\right\}.

Theorem 3. [3] (Minimal norm property). If s𝒮2m(Δn)m+10,f0,f(Δn)s\in\mathcal{S}_{2m}\left(\Delta_{n}\right)\cap\underset{\begin{subarray}{c}0,f\\ 0,f\end{subarray}}{m+1}\left(\Delta_{n}\right), then

s(m+1)2g(m+1)2,gm+102,f(Δn)\left\|s^{(m+1)}\right\|_{2}\leq\left\|g^{(m+1)}\right\|_{2},\forall g\in\underset{\begin{subarray}{c}0\\ 2,f\end{subarray}}{m+1}\left(\Delta_{n}\right)

holds, 2\|\cdot\|_{2} being the usual L2L_{2}-norm.
For any function fW2m+1(Δn)f\in W_{2}^{m+1}\left(\Delta_{n}\right), we have the following corollaries.
Corollary 2. [3] f(m+1)22=sf(m+1)22+f(m+1)sf(m+1)22\left\|f^{(m+1)}\right\|_{2}^{2}=\left\|s_{f}^{(m+1)}\right\|_{2}^{2}+\left\|f^{(m+1)}-s_{f}^{(m+1)}\right\|_{2}^{2}.
Corollary 3. [3] sf(m+1)2f(m+1)2\left\|s_{f}^{(m+1)}\right\|_{2}\leq\left\|f^{(m+1)}\right\|_{2}.
Corollary 4. [3] f(m+1)sf(m+1)2f(m+1)2\left\|f^{(m+1)}-s_{f}^{(m+1)}\right\|_{2}\leq\left\|f^{(m+1)}\right\|_{2}.
Remark 2. [3] If s~:=sf+pm\widetilde{s}:=s_{f}+p_{m}, where pm𝒫mp_{m}\in\mathcal{P}_{m}, it follows s~(m+1)2f(m+1)2\left\|\widetilde{s}^{(m+1)}\right\|_{2}\leq\left\|f^{(m+1)}\right\|_{2}.
Theorem 4. [3] (Best approximation property). If fW2m+1(Δn)f\in W_{2}^{m+1}\left(\Delta_{n}\right) and sf𝒮2m(Δn)s_{f}\in\mathcal{S}_{2m}\left(\Delta_{n}\right) is the derivative-interpolating spline function of even degree, then, for any s𝒮2m(Δn)s\in\mathcal{S}_{2m}\left(\Delta_{n}\right) the relation

sf(m+1)f(m+1)2s(m+1)f(m+1)2\left\|s_{f}^{(m+1)}-f^{(m+1)}\right\|_{2}\leq\left\|s^{(m+1)}-f^{(m+1)}\right\|_{2}

holds.
Remark 3. [3] If sfs𝒫ms_{f}-s\in\mathcal{P}_{m} then

sf(m+1)f(m+1)2=s(m+1)f(m+1)2\left\|s_{f}^{(m+1)}-f^{(m+1)}\right\|_{2}=\left\|s^{(m+1)}-f^{(m+1)}\right\|_{2}
  1. 3.

    The numerical solutions of Lotka-Volterra system with delay by spline functions of even degree

Let us consider the following delay differential system with a constant delay ω>0\omega>0

dyudt=fu(t,y1(t),y2(t),y1(tω),y2(tω)),atb,u=1,2\frac{dy^{u}}{dt}=f^{u}\left(t,y^{1}(t),y^{2}(t),y^{1}(t-\omega),y^{2}(t-\omega)\right),a\leq t\leq b,u=1,2 (3.1)

with initial conditions

yu(t)=φu(t),t[aω,a],u=1,2y^{u}(t)=\varphi^{u}(t),t\in[a-\omega,a],u=1,2 (3.2)

and we suppose that fu:D4f^{u}:D\subset\mathbb{R}^{4}\rightarrow\mathbb{R}, satisfies all the conditions assuring the existence and uniqueness of the solutions yu:[a,b]y^{u}:[a,b]\rightarrow\mathbb{R} of the problem (3.1)+(3.2).

We propose an algorithm to approximate the solutions yuy^{u} of the problem (3.1)+(3.2) by spline functions of even degree su𝒮2m(Δn)s^{u}\in\mathcal{S}_{2m}\left(\Delta_{n}\right), where Δn\Delta_{n} is a partition of [a,b][a,b] and m,nm,n are two integers satisfying the conditions n1n\geq 1 and mn+1m\leq n+1.

For t[a,a+ω]t\in[a,a+\omega], the problem (3.1)+(3.2) reduces to the following usual initial value problems:

{dyudt=fu(t,y1(t),y2(t),y1(tω),y2(tω)),ata+ωyu(t)=φu(a)=y1u,u=1,2\left\{\begin{array}[]{l}\frac{dy^{u}}{dt}=f^{u}\left(t,y^{1}(t),y^{2}(t),y^{1}(t-\omega),y^{2}(t-\omega)\right),a\leq t\leq a+\omega\\ y^{u}(t)=\varphi^{u}(a)=y_{1}^{u},u=1,2\end{array}\right.

Theorem 5. If yuy^{u} are the exact solutions of the problem (3.1)+(3.2), then, there exists some unique spline functions syu𝒮2m(Δn)s_{y^{u}}\in\mathcal{S}_{2m}\left(\Delta_{n}\right) such that:

syu(t1)=yu(t1)=φu(t1)\displaystyle s_{y^{u}}\left(t_{1}\right)=y^{u}\left(t_{1}\right)=\varphi^{u}\left(t_{1}\right)
dsyudt(tk)=dyudt(tk),k=1,n¯,u=1,2\displaystyle\frac{ds_{y^{u}}}{dt}\left(t_{k}\right)=\frac{dy^{u}}{dt}\left(t_{k}\right),k=\overline{1,n},u=1,2 (3.3)

The assertion of this theorem is a direct consequence of Theorem 2 by substituting t1t_{1} by aa and ff by yuy^{u}.

Denoting yku:=yu(tk),y¯ku:=yu(tkω),k=1,n¯,u=1,2y_{k}^{u}:=y^{u}\left(t_{k}\right),\bar{y}_{k}^{u}:=y^{u}\left(t_{k}-\omega\right),k=\overline{1,n},u=1,2, we have

syu(t1)=y1u\displaystyle s_{y^{u}}\left(t_{1}\right)=y_{1}^{u}
dsyudt(tk)=fu(tk,yk1,yk2,y¯k1,y¯k2),k=1,n¯,u=1,2\displaystyle\frac{ds_{y^{u}}}{dt}\left(t_{k}\right)=f^{u}\left(t_{k},y_{k}^{1},y_{k}^{2},\bar{y}_{k}^{1},\bar{y}_{k}^{2}\right),k=\overline{1,n},u=1,2

Corollary 5. If the functions {s0,Sk,k=1,n¯}\left\{s_{0},S_{k},k=\overline{1,n}\right\} are the fundamental spline functions in 𝒮2m(Δn)\mathcal{S}_{2m}\left(\Delta_{n}\right), then we can write

syu(t)=φu(a)+k=1nSk(t)fu(tk,yk1,yk2,y¯k1,y¯k2),u=1,2s_{y^{u}}(t)=\varphi^{u}(a)+\sum_{k=1}^{n}S_{k}(t)f^{u}\left(t_{k},y_{k}^{1},y_{k}^{2},\bar{y}_{k}^{1},\bar{y}_{k}^{2}\right),u=1,2 (3.4)

where yk1,yk2,k=2,n¯y_{k}^{1},y_{k}^{2},k=\overline{2,n}, are unknown, and

y¯ku={φu(tkω), if tka+ω, are known yu(tkω), if tk>a+ω, are unknown. \bar{y}_{k}^{u}=\begin{cases}\varphi^{u}\left(t_{k}-\omega\right),&\text{ if }t_{k}\leq a+\omega,\text{ are known }\\ y^{u}\left(t_{k}-\omega\right),&\text{ if }t_{k}>a+\omega,\text{ are unknown. }\end{cases}

DIANA OTROCOL

We shall call the function syu(t)s_{y^{u}}(t), the approximating solution of the problem (3.1)+(3.2)(3.1)+(3.2) and it can be written as follows

syu(t)\displaystyle s_{y^{u}}(t) =φu(a)+\displaystyle=\varphi^{u}(a)+
+tka+ωSk(t)fu(tk,yk1,yk2,φ1(tkω),φ2(tkω))\displaystyle+\sum_{t_{k}\leq a+\omega}S_{k}(t)f^{u}\left(t_{k},y_{k}^{1},y_{k}^{2},\varphi^{1}\left(t_{k}-\omega\right),\varphi^{2}\left(t_{k}-\omega\right)\right) (3.5)
+tk>a+ωSk(t)fu(tk,yk1,yk2,y¯k1,y¯k2).\displaystyle+\sum_{t_{k}>a+\omega}S_{k}(t)f^{u}\left(t_{k},y_{k}^{1},y_{k}^{2},\bar{y}_{k}^{1},\bar{y}_{k}^{2}\right).

For simplicity, in writing (3.5), let us use the following index sets:

J1:={jtj>a+ω,i:tjω=ti}=:{j1,j2,,jq},\displaystyle J_{1}=\left\{j\in\mathbb{N}\mid t_{j}>a+\omega,\exists i:t_{j}-\omega=t_{i}\right\}=:\left\{j_{1},j_{2},\ldots,j_{q}\right\},
J0:={ijJ1:tjω=ti}=:{i1,i2,,iq},\displaystyle J_{0}=\left\{i\in\mathbb{N}\mid\exists j\in J_{1}:t_{j}-\omega=t_{i}\right\}=:\left\{i_{1},i_{2},\ldots,i_{q}\right\},
I:={jtj>a+ω,i:tjω=ti}=:{d1,d2,,dp}.\displaystyle I=\left\{j\in\mathbb{N}\mid t_{j}>a+\omega,\nexists i:t_{j}-\omega=t_{i}\right\}=:\left\{d_{1},d_{2},\ldots,d_{p}\right\}.

Thus, we can write (3.5) in the form

syu(t)\displaystyle s_{y^{u}}(t) =φu(a)+\displaystyle=\varphi^{u}(a)+
+tka+ωSk(t)fu(tk,yk1,yk2,φ1(tkω),φ2(tkω))\displaystyle+\sum_{t_{k}\leq a+\omega}S_{k}(t)f^{u}\left(t_{k},y_{k}^{1},y_{k}^{2},\varphi^{1}\left(t_{k}-\omega\right),\varphi^{2}\left(t_{k}-\omega\right)\right)
+k=1qSjk(t)fu(tjk,yjk1,yjk2,yik1,yik2)\displaystyle+\sum_{k=1}^{q}S_{j_{k}}(t)f^{u}\left(t_{j_{k}},y_{j_{k}}^{1},y_{j_{k}}^{2},y_{i_{k}}^{1},y_{i_{k}}^{2}\right) (3.6)
+k=1pSdk(t)fu(tdk,ydk1,ydk2,y¯dk1,y¯dk2),\displaystyle+\sum_{k=1}^{p}S_{d_{k}}(t)f^{u}\left(t_{d_{k}},y_{d_{k}}^{1},y_{d_{k}}^{2},\bar{y}_{d_{k}}^{1},\bar{y}_{d_{k}}^{2}\right),

where the values yku,k=2,n¯y_{k}^{u},k=\overline{2,n}, and y¯ku,k=1,p¯,u=1,2\bar{y}_{k}^{u},k=\overline{1,p},u=1,2 are unknown.
Before giving an algorithm to determine these values, we shall give the following estimation error and convergence theorem.

Theorem 6. [3]If yuW2m+1[a,b],u=1,2y^{u}\in W_{2}^{m+1}[a,b],u=1,2 are the exact solutions of the problem (3.1) +(3.2)+(3.2) and syus_{y^{u}} is the spline approximating solution for yuy^{u}, the following estimations hold:

yu(k)syu(k)m(m1)(m2)kΔnmk+1nyu(m+1)2,\left\|y^{u(k)}-s_{y^{u}}^{(k)}\right\|_{\infty}\leq\sqrt{m}(m-1)(m-2)\ldots k\Delta_{n}^{m-k+\frac{1}{n}}\left\|y^{u(m+1)}\right\|_{2},

for k=1,2,,mk=1,2,\ldots,m where Δn:=maxi=2,n{titi1},u=1,2\left\|\Delta_{n}\right\|:=\max_{i=2,n}\left\{t_{i}-t_{i-1}\right\},u=1,2.
Corollary 6. [3]If yuW2m+1[a,b]y^{u}\in W_{2}^{m+1}[a,b], we have

yusyu(ba)m(m1)!yu(m+1)2Δnm12,u=1,2.\left\|y^{u}-s_{y^{u}}\right\|_{\infty}\leq(b-a)\sqrt{m}(m-1)!\left\|y^{u(m+1)}\right\|_{2}\left\|\Delta_{n}\right\|^{m-\frac{1}{2}},u=1,2.

Corollary 7. [3] limΔn0yu(k)syu(k)=0,k=1,m¯,u=1,2\lim_{\left\|\Delta_{n}\right\|\rightarrow 0}\left\|y^{u(k)}-s_{y^{u}}^{(k)}\right\|_{\infty}=0,k=\overline{1,m},u=1,2.

4. Effective development of the algorithm

For any t[a,b]t\in[a,b], we suppose that yu(t)syu(t),u=1,2y^{u}(t)\approx s_{y^{u}}(t),u=1,2.
If we denote, as usual, eu(t):=yu(t)syu(t),t[a,b]e^{u}(t):=y^{u}(t)-s_{y^{u}}(t),t\in[a,b], we have

|eu(t)|m(m1)!Δnm12yu(m+1)2\left|e^{u}(t)\right|\leq\sqrt{m}(m-1)!\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}\left\|y^{u(m+1)}\right\|_{2}

or

|eu(t)|=O(Δnm12),t[a,b]\left|e^{u}(t)\right|=O\left(\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}\right),\forall t\in[a,b]

If we denote

wiu:=syu(ti),eiu:=eu(ti)=yu(ti)syu(ti),i=1,n¯w¯iu:=syu(tiω),e¯iu:=eu(tiω)=yu(tiω)syu(tiω),i=1,n¯\begin{array}[]{ll}w_{i}^{u}:=s_{y^{u}}\left(t_{i}\right),&e_{i}^{u}:=e^{u}\left(t_{i}\right)=y^{u}\left(t_{i}\right)-s_{y^{u}}\left(t_{i}\right),i=\overline{1,n}\\ \bar{w}_{i}^{u}:=s_{y^{u}}\left(t_{i}-\omega\right),&\bar{e}_{i}^{u}:=e^{u}\left(t_{i}-\omega\right)=y^{u}\left(t_{i}-\omega\right)-s_{y^{u}}\left(t_{i}-\omega\right),i=\overline{1,n}\end{array}

then we have yiu=wiu+eiu,y¯iu=w¯iu+e¯iuy_{i}^{u}=w_{i}^{u}+e_{i}^{u},\bar{y}_{i}^{u}=\bar{w}_{i}^{u}+\bar{e}_{i}^{u}, where

wiu=y1u+k=1nSk(ti)fu(tk,yk1,yk2,y¯k1,y¯k2),i=1,n¯,u=1,2\displaystyle w_{i}^{u}=y_{1}^{u}+\sum_{k=1}^{n}S_{k}\left(t_{i}\right)f^{u}\left(t_{k},y_{k}^{1},y_{k}^{2},\bar{y}_{k}^{1},\bar{y}_{k}^{2}\right),i=\overline{1,n},u=1,2 (4.1)
w¯iu=y1u+k=1nSk(tiω)fu(tk,yk1,yk2,y¯k1,y¯k2),i=1,n¯,u=1,2\displaystyle\bar{w}_{i}^{u}=y_{1}^{u}+\sum_{k=1}^{n}S_{k}\left(t_{i}-\omega\right)f^{u}\left(t_{k},y_{k}^{1},y_{k}^{2},\bar{y}_{k}^{1},\bar{y}_{k}^{2}\right),i=\overline{1,n},u=1,2

In what follows, we suppose that in (3.1)+(3.2) the functions

fu:D5(D[a,b]×4)\displaystyle f^{u}:D\subset\mathbb{R}^{5}\rightarrow\mathbb{R}\left(D\subset[a,b]\times\mathbb{R}^{4}\right)
fu(t,u1,u2,u3,u4)u1,fu(t,u1,u2,u3,u4)u2\displaystyle\frac{\partial f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)}{\partial u_{1}},\frac{\partial f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)}{\partial u_{2}}
fu(t,u1,u2,u3,u4)u3,fu(t,u1,u2,u3,u4)u4\displaystyle\frac{\partial f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)}{\partial u_{3}},\frac{\partial f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)}{\partial u_{4}}

are continuous. Thus,

fu(tk,yk1,yk2,y¯k1,y¯k2)\displaystyle f^{u}\left(t_{k},y_{k}^{1},y_{k}^{2},\bar{y}_{k}^{1},\bar{y}_{k}^{2}\right) =fu(tk,wk1+ek1,wk2+ek2,w¯k1+e¯k1,w¯k2+e¯k2)\displaystyle=f^{u}\left(t_{k},w_{k}^{1}+e_{k}^{1},w_{k}^{2}+e_{k}^{2},\bar{w}_{k}^{1}+\bar{e}_{k}^{1},\bar{w}_{k}^{2}+\bar{e}_{k}^{2}\right)
=fu(tk,wk1,wk2,w¯k1,w¯k2)+ek1fu(tk,ξk1,ξk2,ηk1,ηk2)u1\displaystyle=f^{u}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right)+e_{k}^{1}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{1}}
+ek2fu(tk,ξk1,ξk2,ηk1,ηk2)u2+e¯k1fu(tk,ξk1,ξk2,ηk1,ηk2)u3\displaystyle+e_{k}^{2}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{2}}+\bar{e}_{k}^{1}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{3}}
+e¯k2fu(tk,ξk1,ξk2,ηk1,ηk2)u4\displaystyle+\bar{e}_{k}^{2}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{4}}

DIANA OTROCOL

where

min(wku,wku+eku)<ξku<max(wku,wku+eku)\displaystyle\min\left(w_{k}^{u},w_{k}^{u}+e_{k}^{u}\right)<\xi_{k}^{u}<\max\left(w_{k}^{u},w_{k}^{u}+e_{k}^{u}\right)
min(w¯ku,w¯ku+e¯ku)<ηku<max(w¯ku,w¯ku+e¯ku),u=1,2.\displaystyle\min\left(\bar{w}_{k}^{u},\bar{w}_{k}^{u}+\bar{e}_{k}^{u}\right)<\eta_{k}^{u}<\max\left(\bar{w}_{k}^{u},\bar{w}_{k}^{u}+\bar{e}_{k}^{u}\right),u=1,2.

We can write the system (4.1) in the form

wiu=y1u+k=1nSk(ti)fu(tk,wk1,wk2,w¯k1,w¯k2)+Eiu,i=1,n¯,u=1,2\displaystyle w_{i}^{u}=y_{1}^{u}+\sum_{k=1}^{n}S_{k}\left(t_{i}\right)f^{u}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right)+E_{i}^{u},i=\overline{1,n},u=1,2
w¯iu=y1u+k=1nSk(tiω)fu(tk,wk1,wk2,w¯k1,w¯k2)+E¯iu,i=1,n¯,u=1,2\displaystyle\bar{w}_{i}^{u}=y_{1}^{u}+\sum_{k=1}^{n}S_{k}\left(t_{i}-\omega\right)f^{u}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right)+\bar{E}_{i}^{u},i=\overline{1,n},u=1,2

where

Eiu=\displaystyle E_{i}^{u}= k=1nSk(ti)ek1fu(tk,ξk1,ξk2,ηk1,ηk2)u1+k=1nSk(ti)e¯k2fu(tk,ξk1,ξk2,ηk1,ηk2)u2\displaystyle\sum_{k=1}^{n}S_{k}\left(t_{i}\right)e_{k}^{1}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{1}}+\sum_{k=1}^{n}S_{k}\left(t_{i}\right)\bar{e}_{k}^{2}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{2}}
+k=1nSk(ti)ek1fu(tk,ξk1,ξk2,ηk1,ηk2)u3+k=1nSk(ti)e¯k2fu(tk,ξk1,ξk2,ηk1,ηk2)u4\displaystyle+\sum_{k=1}^{n}S_{k}\left(t_{i}\right)e_{k}^{1}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{3}}+\sum_{k=1}^{n}S_{k}\left(t_{i}\right)\bar{e}_{k}^{2}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{4}}
=\displaystyle= O(Δnm12)\displaystyle O\left(\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}\right)
E¯iu\displaystyle\bar{E}_{i}^{u} =k=1nSk(tiω)ek1fu(tk,ξk1,ξk2,ηk1,ηk2)u1+\displaystyle=\sum_{k=1}^{n}S_{k}\left(t_{i}-\omega\right)e_{k}^{1}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{1}}+
+k=1nSk(tiω)e¯k2fu(tk,ξk1,ξk2,ηk1,ηk2)u2+\displaystyle+\sum_{k=1}^{n}S_{k}\left(t_{i}-\omega\right)\bar{e}_{k}^{2}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{2}}+
+k=1nSk(tiω)ek1fu(tk,ξk1,ξk2,ηk1,ηk2)u3+\displaystyle+\sum_{k=1}^{n}S_{k}\left(t_{i}-\omega\right)e_{k}^{1}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{3}}+
+k=1nSk(tiω)e¯k2fu(tk,ξk1,ξk2,ηk1,ηk2)u4=\displaystyle+\sum_{k=1}^{n}S_{k}\left(t_{i}-\omega\right)\bar{e}_{k}^{2}\frac{\partial f^{u}\left(t_{k},\xi_{k}^{1},\xi_{k}^{2},\eta_{k}^{1},\eta_{k}^{2}\right)}{\partial u_{4}}=
=\displaystyle= O(Δnm12),i=1,n¯,u=1,2\displaystyle O\left(\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}\right),i=\overline{1,n},u=1,2

supposing that

|fu(t,u1,u2,u3,u4)u1|M1,|fu(t,u1,u2,u3,u4)u2|M2\displaystyle\left|\frac{\partial f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)}{\partial u_{1}}\right|\leq M_{1},\left|\frac{\partial f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)}{\partial u_{2}}\right|\leq M_{2}
|fu(t,u1,u2,u3,u4)u3|M3,|fu(t,u1,u2,u3,u4)u4|M4\displaystyle\left|\frac{\partial f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)}{\partial u_{3}}\right|\leq M_{3},\left|\frac{\partial f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)}{\partial u_{4}}\right|\leq M_{4} (4.2)

on DD. Obviously, Eiu0E_{i}^{u}\rightarrow 0 and E¯iu0\bar{E}_{i}^{u}\rightarrow 0 for Δn0,u=1,2\left\|\Delta_{n}\right\|\rightarrow 0,u=1,2.

Now, we have to solve the following nonlinear system:

{wiu=y1u+k=1nSk(ti)fu(tk,wk1,wk2,w¯k1,w¯k2),i=1,n¯w¯iu=y1u+k=1nSk(tiω)fj(tk,wk1,wk2,w¯k1,w¯k2),i=1,n¯\left\{\begin{array}[]{l}w_{i}^{u}=y_{1}^{u}+\sum_{k=1}^{n}S_{k}\left(t_{i}\right)f^{u}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right),i=\overline{1,n}\\ \bar{w}_{i}^{u}=y_{1}^{u}+\sum_{k=1}^{n}S_{k}\left(t_{i}-\omega\right)f^{j}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right),i=\overline{1,n}\end{array}\right.

Let us denote:

wu:=(w1u,,wnu),w¯u:=(w¯1u,,w¯nu),Wu=(wu,w¯u)\displaystyle w^{u}=\left(w_{1}^{u},\ldots,w_{n}^{u}\right),\bar{w}^{u}=\left(\bar{w}_{1}^{u},\ldots,\bar{w}_{n}^{u}\right),W^{u}=\left(w^{u},\bar{w}^{u}\right)
Hiu(w,w¯):=y1u+k=1nSk(ti)fu(tk,wk1,wk2,w¯k1,w¯k2),i=1,n¯\displaystyle H_{i}^{u}(w,\bar{w})=y_{1}^{u}+\sum_{k=1}^{n}S_{k}\left(t_{i}\right)f^{u}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right),i=\overline{1,n}
H¯iu(w,w¯):=y1u+k=1nSk(tiω)fu(tk,wk1,wk2,w¯k1,w¯k2),i=1,n¯\displaystyle\bar{H}_{i}^{u}(w,\bar{w})=y_{1}^{u}+\sum_{k=1}^{n}S_{k}\left(t_{i}-\omega\right)f^{u}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right),i=\overline{1,n}
Hu(Wu)\displaystyle H^{u}\left(W^{u}\right) :=Hu(wu,w¯u)\displaystyle=H^{u}\left(w^{u},\bar{w}^{u}\right)
:=(H1u(wu,w¯u),,Hnu(wu,w¯u),H¯1u(wu,w¯u),,H¯nu(wu,w¯u))\displaystyle=\left(H_{1}^{u}\left(w^{u},\bar{w}^{u}\right),\ldots,H_{n}^{u}\left(w^{u},\bar{w}^{u}\right),\bar{H}_{1}^{u}\left(w^{u},\bar{w}^{u}\right),\ldots,\bar{H}_{n}^{u}\left(w^{u},\bar{w}^{u}\right)\right)

and

Au=(H1u(wu,w¯u)w1uH1u(wu,w¯u)wnuH1u(wu,w¯u)w¯1uH1u(wu,w¯u)w¯nuHnu(wu,w¯u)w1uHnuj(wu,w¯u)wnuHnu(wu,w¯u)w¯1uHnu(wu,w¯u)w¯nuH¯1u(wu,w¯u)w1uH¯1u(wu,w¯u)wnuH¯1u(wu,w¯u)w¯1uH¯1u(wu,w¯u)w¯nuH¯nu(wu,w¯u)w1uH¯nu(wu,w¯u)wnuH¯nu(wu,w¯u)w¯1uH¯nu(wu,w¯u)w¯nu)A^{u}=\left(\begin{array}[]{cccccc}\frac{\partial H_{1}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial w_{1}^{u}}&\ldots&\frac{\partial H_{1}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial w_{n}^{u}}&\frac{\partial H_{1}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial\bar{w}_{1}^{u}}&\ldots&\frac{\partial H_{1}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial\bar{w}_{n}^{u}}\\ \ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\ \frac{\partial H_{n}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial w_{1}^{u}}&\ldots&\frac{\partial H_{n}^{uj}\left(w^{u},\bar{w}^{u}\right)}{\partial w_{n}^{u}}&\frac{\partial H_{n}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial\bar{w}_{1}^{u}}&\ldots&\frac{\partial H_{n}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial\bar{w}_{n}^{u}}\\ \frac{\partial\bar{H}_{1}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial w_{1}^{u}}&\ldots&\frac{\partial\bar{H}_{1}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial w_{n}^{u}}&\frac{\partial\bar{H}_{1}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial\bar{w}_{1}^{u}}&\ldots&\frac{\partial\bar{H}_{1}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial\bar{w}_{n}^{u}}\\ \ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\ \frac{\partial\bar{H}_{n}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial w_{1}^{u}}&\ldots&\frac{\partial\bar{H}_{n}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial w_{n}^{u}}&\frac{\partial\bar{H}_{n}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial\bar{w}_{1}^{u}}&\ldots&\frac{\partial\bar{H}_{n}^{u}\left(w^{u},\bar{w}^{u}\right)}{\partial\bar{w}_{n}^{u}}\end{array}\right)

Shortly, we write the system (4.3) by

Wu=Hu(Wu)W^{u}=H^{u}\left(W^{u}\right) (4.4)

In order to investigate the solvability of the nonlinear system (4.4) we shall use a classical theorem.

Theorem 7. [6] Let Ω2n+2\Omega\subset\mathbb{R}^{2n+2} be a bounded domain and let Hu:ΩΩH^{u}:\Omega\rightarrow\Omega be a vector function defined by

Wu\displaystyle W^{u} =(wu,w¯u)\displaystyle=\left(w^{u},\bar{w}^{u}\right)\longmapsto
(H1u(wu,w¯u),,Hnu(wu,w¯u),H¯1u(wu,w¯u),,H¯nu(wu,w¯u))\displaystyle\left(H_{1}^{u}\left(w^{u},\bar{w}^{u}\right),\ldots,H_{n}^{u}\left(w^{u},\bar{w}^{u}\right),\bar{H}_{1}^{u}\left(w^{u},\bar{w}^{u}\right),\ldots,\bar{H}_{n}^{u}\left(w^{u},\bar{w}^{u}\right)\right)
=Hu(Wu)\displaystyle=H^{u}\left(W^{u}\right)

If the functions HuH^{u}, and HuWu\frac{\partial H^{u}}{\partial W^{u}}, are continuous in Ω\Omega, then there exists in Ω\Omega a fixed point WuW^{u*} of HuH^{u}, i.e. Wu=Hu(Wu)W^{u*}=H^{u}\left(W^{u*}\right), which can be found by iterations. Wu=limnWu(n),Wu(k):=Hu(Wu(k1)),k=1,2,,Wu(0)ΩW^{u*}=\lim_{n\rightarrow\infty}W^{u(n)},W^{u(k)}:=H^{u}\left(W^{u(k-1)}\right),k=1,2,\ldots,W^{u(0)}\in\Omega (arbitrary). If in addition AL<1\|A\|\leq L<1, for any iteration Wu(k)W^{u(k)}, the following estimation holds:

WuWu(k)Lk1LWu(1)Wu(0)\left\|W^{u}-W^{u(k)}\right\|\leq\frac{L^{k}}{1-L}\left\|W^{u(1)}-W^{u(0)}\right\|

Taking in consideration the expression of HuH^{u}, the matrix AuA^{u} is Au=SFuA^{u}=SF^{u}, where

S=(S1(t1)Sn(t1)S1(t1)Sn(t1)S1(tn)Sn(tn)S1(tn)Sn(tn)S1(t1ω)Sn(t1ω)S1(t1ω)Sn(t1ω)S1(tnω)Sn(tnω)S1(tnω)Sn(tnω))S=\left(\begin{array}[]{cccccc}S_{1}\left(t_{1}\right)&\cdots&S_{n}\left(t_{1}\right)&S_{1}\left(t_{1}\right)&\cdots&S_{n}\left(t_{1}\right)\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots\\ S_{1}\left(t_{n}\right)&\cdots&S_{n}\left(t_{n}\right)&S_{1}\left(t_{n}\right)&\cdots&S_{n}\left(t_{n}\right)\\ S_{1}\left(t_{1}-\omega\right)&\cdots&S_{n}\left(t_{1}-\omega\right)&S_{1}\left(t_{1}-\omega\right)&\cdots&S_{n}\left(t_{1}-\omega\right)\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots\\ S_{1}\left(t_{n}-\omega\right)&\cdots&S_{n}\left(t_{n}-\omega\right)&S_{1}\left(t_{n}-\omega\right)&\cdots&S_{n}\left(t_{n}-\omega\right)\end{array}\right)

and FF is the diagonal matrix with the following elements:

fu(tk,wk1,wk2,w¯k1,w¯k2)wku,fu(tk,wk1,wk2,w¯k1,w¯k2)w¯ku,k=1,n¯,u=1,2.\frac{\partial f^{u}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right)}{\partial w_{k}^{u}},\frac{\partial f^{u}\left(t_{k},w_{k}^{1},w_{k}^{2},\bar{w}_{k}^{1},\bar{w}_{k}^{2}\right)}{\partial\bar{w}_{k}^{u}},k=\overline{1,n},u=1,2.

Theorem 8. Suppose that there exists the constants M,NM,N such that (4.2) holds and

|fu(t,u1,u2,u3,u4)|Nu,(t,u1,u2,u3,u4)D,u=1,2\left|f^{u}\left(t,u_{1},u_{2},u_{3},u_{4}\right)\right|\leq N_{u},\forall\left(t,u_{1},u_{2},u_{3},u_{4}\right)\in D,u=1,2

If MuS1M_{u}\leq\|S\|^{-1}, then the system (4.3) has a solution which can be found by iterations.

5. Numerical example

Example 1. Consider the following Lotka-Volterra delay differential system

{dy1dt=y1[y1(t1)+y2(t1)+1et1e2t2]dy2dt=y2[y2(t1)+2e2t2],t[0,b]\left\{\begin{array}[]{l}\frac{dy^{1}}{dt}=y^{1}\left[y^{1}(t-1)+y^{2}(t-1)+1-e^{t-1}-e^{2t-2}\right]\\ \frac{dy^{2}}{dt}=y^{2}\left[y^{2}(t-1)+2-e^{2t-2}\right]\end{array},t\in[0,b]\right.

with initial conditions

{y1(t)=φ1(t)=et,t[1,0]y2(t)=φ2(t)=e2t,t[1,0]\left\{\begin{array}[]{c}y^{1}(t)=\varphi^{1}(t)=e^{t},t\in[-1,0]\\ y^{2}(t)=\varphi^{2}(t)=e^{2t},t\in[-1,0]\end{array}\right.

and the corresponding exact solutions

(y1(t),y2(t))=(et,e2t)\left(y^{1}(t),y^{2}(t)\right)=\left(e^{t},e^{2t}\right)

In the below table are given the actual errors for the considered examples. The table list

max\displaystyle\max {|wiuyu(ti)|,i=1,n¯;|w¯iuyu(tjω)|,jI\displaystyle\left\{\left|w_{i}^{u}-y^{u}\left(t_{i}\right)\right|,i=\overline{1,n};\left|\bar{w}_{i}^{u}-y^{u}\left(t_{j}-\omega\right)\right|,j\in I\right.
|syu(a+0.1i)y(a+0.1i)|,i=1,10(ba)¯}\displaystyle\left.\left|s_{y^{u}}(a+0.1i)-y(a+0.1i)\right|,i=\overline{1,10(b-a)}\right\}

for m=1,2,3m=1,2,3 and the interval [a,b][a,b] is [0,2][0,2].

[a,b][a,b] [0,2][0,2]
n\mn\backslash m 1 2 3
6 65.6521 5.4291 6.4198
9 12.2874 0.75975 0.25095
11 7.0645 0.39634 0.072303

For a=0,b=2,ω=1,m=1,n=6a=0,b=2,\omega=1,m=1,n=6 we obtain r=3r=3 (the number of the nodes at the left of a+ωa+\omega ), p=3,q=0p=3,q=0. The approximating solution s~u\widetilde{s}^{u} and the exact solution yu,u=1,2y^{u},u=1,2, in this case, are plotted in FIGURE 1 and FIGURE 2. For a=0,b=2,ω=1,m=2,n=9a=0,b=2,\omega=1,m=2,n=9 we obtain r=5,p=0,q=4r=5,p=0,q=4. The approximating solution s~u\widetilde{s}^{u} and the exact solution yu,u=1,2y^{u},u=1,2, in this case, are plotted in FIGURE 3 and FIGURE 4.

Refer to caption
Figure 1: Figure 1. Comparison between the approximation solution s~1\widetilde{s}^{1} and the exact solution y1y^{1} in the first case.
Refer to caption
Figure 2: Figure 2. Comparison between the approximation solution s~2\widetilde{s}^{2} and the exact solution y2y^{2} in the first case.
Refer to caption
Figure 3: Figure 3. Comparison between the approximation solution s~1\widetilde{s}^{1} and the exact solution y1y^{1} in the second case.
Refer to caption
Figure 4: Figure 4. Comparison between the approximation solution s~2\widetilde{s}^{2} and the exact solution y2y^{2} in the second case.

DIANA OTROCOL

References

[1] Akça, H., Micula, Gh., Numerical solutions of system of differential equation with deviating argument by spline functions, Itinerant seminar of functional equations approximation and convexity, Cluj-Napoca, 1990.
[2] Blaga, P., Some even degree spline interpolation, Studia Univ. "Babes-Bolyai", Mathematica, 37, 1(1992), 65-72.
[3] Blaga, P., Micula, Gh., Polynomial natural spline functions of even degree, Studia Univ. Babeş-Bolyai, Mathematica 38, 2(1993), 31-40.
[4] Blaga, P., Micula, Gh., Polynomial spline functions of even degree approximating the solutions of differential equations, Analele Universităţii din Timişoara, Vol. 36(1998), fasc. 2.
[5] Blaga, P., Micula, Gh., Akça, H., On the use of spline functions of even degree for the numerical solution of the delay differential equations, Calcolo 32, no. 1-2(1996), 83-101.
[6] Coman, Gh., Pavel, G., Rus, I., Rus, I.A., Introducere în teoria ecuatiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
[7] Micula, Gh., Funcţii spline şi aplicaţii, Editura Tehnică, Bucureşti, 1978.
"Babeş-Bolyai" University, Department of Applied Mathematics, Str. M. Kogalniceanu 1, RO-400084 Cluj-Napoca, Romania
E-mail address: dotrocol@math.ubbcluj.ro

2006

Related Posts