Abstract
Starting from a positive summation integral operator we present linear combinations of these operators which under definite conditions approximate a function more closely then the above operators. Also we establish a connection between the local smoothness of local Lipschitz \(-\alpha\left( 0<\alpha\leq1\right)\) functions and the local approximating property.
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
Beta-function; linear positive operator; Baskakov operator; local Lipschitz function
Paper coordinates
O. Agratini, Properties concerning the Baskakov-Beta operators, in: Analysis, Functional Equations, Approximation and Convexity, Proceedings of the Conference held in honour of Professor Elena Popoviciu on the occasion of her 75th birthday, Editura Carpatica, pp. 1-7, 1999.
About this paper
Journal
Publisher Name
Editura Carpatica
DOI
Print ISSN
Online ISSN
google scholar link
[1] V.A., Baskakov, An exemple of a sequence of linear positive operators in the space of continuous funcitons, Dokl. Akad, Nauk, SSSR 113 (1957), 249-251.
[2] P.L. Butzer, Linear combinations of Bernstein polynomials, Canad. Math. J. 5 (1953), 559-567.
[3] Z. Ditzian and V. Totik, “Moduli of Smoothness”. Springer in Computational Mathematics, vol. 9, Springer Verlag, Berlin-Heidleberg-New York, 1987.
[4] J.L. Durrmeyer, Une formule d’inversion de la transformee de Laplace: Applications a la theorie des moments. These de 3e cycle, Faculte des Sciences de l’Univeriste de Paris, 1967.
[5] V. Gupta, Rate of convergence by Baskakov operators. Mathematica, Tome 37 (60), no. 1-2, 1995, 109-117.
[6] C.P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators, Canad. J. Math., 28 (1976), 1224-1250.