## Abstract

In this paper we apply some iterative methods obtained by inverse interpolation, in order to solve some specific classes of equations: the Ricatti equation, a Fredholm type equation, and the eigenvalue problem for a class of linear operators.

We obtain some semilocal convergence results, showing the r-convergence orders of the iterates.

## Authors

Emil **Cătinaş**

(Tiberiu Popoviciu Institute of Numerical Analysis)

Ion **Păvăloiu**

(Tiberiu Popoviciu Institute of Numerical Analysis)

## Keywords

inverse interpolation iterative methods; Ricatti equation; Fredholm type equation; eigenvalue problem; semilocal convergence results; r-convergence order.

## Cite this paper as:

E. Cătinaş, I. Păvăloiu, *On some interpolatory iterative methods for the second degree polynomial operators (II)*, Rev. Anal. Numér. Théor. Approx., **28** (1999) no. 2, pp. 133-143.

Scanned paper (soon).

Latex version of the paper (soon).

## About this paper

##### Publisher Name

Editions de l’Academie Roumaine.

##### Paper on the journal website.

##### Print ISSN

1222-9024

##### Online ISSN

2457-8126

##### MR

?

##### ZBL

?

## Google Scholar citations

## References

*The Solution of Characteristic Value-Vector Problems by Newton Method*, Numer. Math. 11 (1968), 38-45.

*On the Chebyshev method for approximating the eigenvalue of linear operators*, Rev. Anal. Numer. Theor. Approx., 25, 1-2 (1996), 43-56.

post

*On a Chebyshev-type Method for approximating the solutions of Polynomial Operator Equations of Degree 2.*Proceedings of the International Conference on Approximation and Optimization, Cluj-Napoca, July 29-August 1, 1996, Vol. 1, 219-226.

*On approximating the eigenvalues and eigenvectors of linear continuous operators*, Rev. Anal. Numer. Theor. Approx. 26 1-2 (1997), 19-27.

post

*On some interpolatory iterative methods for the second degree polynomial operators (I).*Rev. Anal. Numer. Theor. Approx., to appear.

post

*Valeurs propres de matrices.*Mason, Paris, 1988.

*Functionalanalysis und Numerische Mathematic.*Springer-Verlag, Berlin, 1964.

*Improving the Accurarcy of the Computed Eigenvalues and Eigenvectors*. SIAM J. Numer. Anal., 20 1 (1983), 23-45.

*On the Scaled Newton Method for the Symmetric Eigenvalue Problem.*Computingh, 45 (1990), pp.277-282.

*O nekotorîh Modifikatiah Metoda Niutona dlea Resenia Nelineinoi Spektralnoi Zadaci*. J. Vîcisl. matem. i matem. fiz.,33 9 (1973), pp. 1403-1409 (in Russìan).

*lntegral Equations, Theoretical Introduction*, Nauka Moskow, 1975 (in russian).

*Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press. New York. 1970

*Inverse Iteration, III-Conditioned Equations and Newton’s Method*, SIAM Review.21. 3 (1979), pp.339-360.

*A Note on the Newton Iteration for the Algebraic Eigenvalue Problem*, SIAM J. Matrix Anal. Appl., 9 4 (1988), pp.561-569.

*The Projected Newton Method has Order 1+√2 for the Symmetric Eigenvalue Problem*, SIAM J. Numer. Anal. 25,6 (1988), pp.1376-1382.

*On the Iterative Method with Simultaneous Approximation of the Inverse of the Operator*, Izv. Acad. Nauk. Estonskoi S.S.R., 16 4 (1967), pp. 40-411.

*Inexact Newton Preconditioning Techniques for Eigenvalue Problems*, Lawrence Berkeley National Laboratory report number 41382 and Minnesota Supercomputing Institute report number UMSI 98-10, 1998.

*Error Bounds for Computed Eigenvalues and Eigenvectors*, Numer. Math., 34 (1980), pp.189-199.