Še zice că un şir de polinoame în
x
x
x x x :
(1)
P
0
,
P
1
,
…
…
P
n
,
…
…
(1)
P
0
,
P
1
,
…
…
P
n
,
…
…
{:(1)P_(0)","P_(1)","dots dotsP_(n)","dots dots:} \begin{equation*}
P_{0}, P_{1}, \ldots \ldots P_{n}, \ldots \ldots \tag{1}
\end{equation*} (1) P 0 , P 1 , … … P n , … …
unde pentru simplificare se poate presupune:
P
0
=
1
,
P
0
=
1
,
P_(0)=1, P_{0}=1, P 0 = 1 ,
fără a restrânge generalifatea, formează un şir Appell, dacă
(2)
d
P
n
d
x
=
n
P
n
−
1
(2)
d
P
n
d
x
=
n
P
n
−
1
{:(2)(dP_(n))/(dx)=nP_(n-1):} \begin{equation*}
\frac{d P_{n}}{d x}=n P_{n-1} \tag{2}
\end{equation*} (2) d P n d x = n P n − 1
E uşor de văzut că
F
n
F
n
F_(n) F_{n} F n este de forma
P
n
=
x
n
+
n
a
1
x
n
−
1
+
n
(
n
−
1
)
a
2
x
n
−
2
+
…
+
n
!
a
n
,
P
n
=
x
n
+
n
a
1
x
n
−
1
+
n
(
n
−
1
)
a
2
x
n
−
2
+
…
+
n
!
a
n
,
P_(n)=x^(n)+na_(1)x^(n-1)+n(n-1)a_(2)x^(n-2)+dots+n!a_(n), P_{n}=x^{n}+n a_{1} x^{n-1}+n(n-1) a_{2} x^{n-2}+\ldots+n!a_{n}, P n = x n + n a 1 x n − 1 + n ( n − 1 ) a 2 x n − 2 + … + n ! a n ,
unde
a
1
,
a
2
,
…
.
n
u
a
1
,
a
2
,
…
.
n
u
a_(1),a_(2),dots.nu a_{1}, a_{2}, \ldots . n u a 1 , a 2 , … . n u depind de
n
n
n n n . Şirul (1) depinde deci de succesiu= nca de numere
a
˙
1
,
a
2
,
…
…
a
m
,
…
1
)
a
˙
1
,
a
2
,
…
…
a
m
,
…
1
{:a^(˙)_(1),a_(2),dots dotsa_(m),dots^(1)) \left.\dot{a}_{1}, a_{2}, \ldots \ldots a_{m}, \ldots{ }^{1}\right) a ˙ 1 , a 2 , … … a m , … 1 )
Polinoamele considerate intervin în multe chesliuni importante
d
e
a
=
d
e
a
=
dea= \mathrm{d} e \mathrm{a}= d e a = nalizǎ. Polinoamele lui Bernoulli şi Euler formează fiecare un şir Appell. Ele intervin in calculul difercnțelor finite. Polinoamele
R
v
(
x
,
k
)
R
v
(
x
,
k
)
Rv(x,k) R v(x, k) R v ( x , k ) studiate de DI. R. Racliş
2
2
^(2) { }^{2} 2 ) verifică şi cle conditia (2). Polinoamele lui Hermite, putin transformate,
2
n
H
n
=
e
−
x
2
d
n
d
x
n
e
x
2
2
n
H
n
=
e
−
x
2
d
n
d
x
n
e
x
2
2^(n)H_(n)=e^(-x^(2))(d^(n))/(dx^(n))e^(x^(2)) 2^{n} H_{n}=e^{-x^{2}} \frac{d^{n}}{d x^{n}} e^{x^{2}} 2 n H n = e − x 2 d n d x n e x 2
cari se întâlnesc în teoria ecuaţiilor cu derivate partiale şi în multe alte chestiuni, formează şi ele un şir Appell.
2. In lucrarea de faţă ne propunem a găsi toate şirurile (1) cari sax tisfac conditia (2), astfel ca între trei polinoame consecutive
P
n
,
P
n
−
1
P
n
,
P
n
−
1
P_(n),P_(n-1) P_{n}, P_{n-1} P n , P n − 1 ,
P
n
−
2
P
n
−
2
P_(n-2) P_{n-2} P n − 2 să avem o relaţie identică de forma:
(3)
A
n
P
n
+
B
n
P
n
−
1
+
C
n
P
n
−
2
=
0
,
A
n
P
n
+
B
n
P
n
−
1
+
C
n
P
n
−
2
=
0
,
A_(n)P_(n)+B_(n)P_(n-1)+C_(n)P_(n-2=0,) A_{n} P_{n}+B_{n} P_{n-1}+C_{n} P_{n-2=0,} A n P n + B n P n − 1 + C n P n − 2 = 0 ,
unde
A
n
,
B
n
,
C
n
A
n
,
B
n
,
C
n
A_(n),B_(n),C_(n) A_{n}, B_{n}, C_{n} A n , B n , C n sunt polinoame în
x
x
x x x de grade
0
,
1
,
2
0
,
1
,
2
0,1,2 0,1,2 0 , 1 , 2 , şi egalitatea are loc oricare ar fi
n
n
n n n . De exemplu polinoamele sus-amintite a lui Hermite safisfac o astfel de conditie.
3. Să presupunem întâi că
A
n
A
n
A_(n) A_{n} A n e nul oricare ar fì
n
n
n n n . Relaţia (3) devine
(4)
B
n
P
n
−
1
+
C
n
P
n
−
2
=
0
(4)
B
n
P
n
−
1
+
C
n
P
n
−
2
=
0
{:(4)B_(n)P_(n-1)+C_(n)P_(n-2)=0:} \begin{equation*}
B_{n} P_{n-1}+C_{n} P_{n-2}=0 \tag{4}
\end{equation*} (4) B n P n − 1 + C n P n − 2 = 0
Această relatie ne arată că
P
n
−
1
,
P
n
−
2
P
n
−
1
,
P
n
−
2
P_(n-1),P_(n-2) P_{n-1}, P_{n-2} P n − 1 , P n − 2 , au cel puțin
n
−
3
n
−
3
n-3 n-3 n − 3 zerori comune şi cum
P
n
−
2
P
n
−
2
P_(n-2) \mathrm{P}_{n-2} P n − 2 diferă numai printr'un factor constant de derivata lui
P
n
−
1
P
n
−
1
P_(n-1) \mathrm{P}_{n-1} P n − 1 , urmează că
P
n
−
1
P
n
−
1
P_(n-1) \mathrm{P}_{n-1} P n − 1 este de forma:
P
n
−
1
=
(
x
+
a
)
n
−
2
(
x
+
b
n
−
1
)
P
n
−
1
=
(
x
+
a
)
n
−
2
x
+
b
n
−
1
P_(n-1)=(x+a)^(n-2)(x+b_(n-1)) P_{n-1}=(x+a)^{n-2}\left(x+b_{n-1}\right) P n − 1 = ( x + a ) n − 2 ( x + b n − 1 )
Relaţia fundamentală (2) ne dă imediat
b
n
n
=
b
n
−
1
n
−
1
−
a
n
(
n
−
1
)
=
b
n
−
1
n
−
1
−
a
(
1
n
−
1
−
1
n
)
,
b
n
n
=
b
n
−
1
n
−
1
−
a
n
(
n
−
1
)
=
b
n
−
1
n
−
1
−
a
1
n
−
1
−
1
n
,
(b_(n))/(n)=(b_(n-1))/(n-1)-(a)/(n(n-1))=(b_(n-1))/(n-1)-a((1)/(n-1)-(1)/(n)), \frac{b_{n}}{n}=\frac{b_{n-1}}{n-1}-\frac{a}{n(n-1)}=\frac{b_{n-1}}{n-1}-a\left(\frac{1}{n-1}-\frac{1}{n}\right), b n n = b n − 1 n − 1 − a n ( n − 1 ) = b n − 1 n − 1 − a ( 1 n − 1 − 1 n ) ,
din care se are
b
n
=
n
(
b
2
−
a
)
+
2
a
2
b
n
=
n
b
2
−
a
+
2
a
2
b_(n)=(n(b_(2)-a)+2a)/(2) b_{n}=\frac{n\left(b_{2}-a\right)+2 a}{2} b n = n ( b 2 − a ) + 2 a 2
Se poate aşa dal scrie
P
0
=
1
,
P
1
=
x
+
a
+
b
2
,
P
2
=
(
x
+
a
)
(
x
+
b
)
(I)
P
n
=
(
x
+
a
)
n
−
1
(
x
+
n
(
b
−
a
)
+
2
a
2
)
P
0
=
1
,
P
1
=
x
+
a
+
b
2
,
P
2
=
(
x
+
a
)
(
x
+
b
)
(I)
P
n
=
(
x
+
a
)
n
−
1
x
+
n
(
b
−
a
)
+
2
a
2
{:[P_(0)=1","P_(1)=x+(a+b)/(2)","P_(2)=(x+a)(x+b)],[(I)P_(n)=(x+a)^(n-1)(x+(n(b-a)+2a)/(2))]:} \begin{gather*}
\mathrm{P}_{0}=1, \mathrm{P}_{1}=x+\frac{a+b}{2}, \mathrm{P}_{2}=(x+a)(x+b) \\
\mathrm{P}_{n}=(x+a)^{n-1}\left(x+\frac{n(b-a)+2 a}{2}\right) \tag{I}
\end{gather*} P 0 = 1 , P 1 = x + a + b 2 , P 2 = ( x + a ) ( x + b ) (I) P n = ( x + a ) n − 1 ( x + n ( b − a ) + 2 a 2 )
Se vede apoi că
B
n
=
x
+
(
n
−
2
)
(
b
−
a
)
+
2
a
2
C
n
=
(
x
+
a
)
(
x
+
n
(
b
−
a
)
+
2
a
2
B
n
=
x
+
(
n
−
2
)
(
b
−
a
)
+
2
a
2
C
n
=
(
x
+
a
)
x
+
n
(
b
−
a
)
+
2
a
2
{:[B_(n)=x+((n-2)(b-a)+2a)/(2)],[C_(n)=(x+a)(x+(n(b-a)+2a)/(2):}]:} \begin{aligned}
& B_{n}=x+\frac{(n-2)(b-a)+2 a}{2} \\
& C_{n}=(x+a)\left(x+\frac{n(b-a)+2 a}{2}\right.
\end{aligned} B n = x + ( n − 2 ) ( b − a ) + 2 a 2 C n = ( x + a ) ( x + n ( b − a ) + 2 a 2
Se ştie că un şir de polinoame Appel are o funcţie generatoare de forma.
F
(
z
)
e
z
x
=
∑
n
=
0
∞
z
n
n
!
P
n
,
F
(
z
)
e
z
x
=
∑
n
=
0
∞
 
z
n
n
!
P
n
,
F(z)e^(zx)=sum_(n=0)^(oo)(z^(n))/(n!)P_(n), F(z) e^{z x}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} P_{n}, F ( z ) e z x = ∑ n = 0 ∞ z n n ! P n ,
F
(
z
)
F
(
z
)
F(z) F(z) F ( z ) find funcţie numai de
z
z
z z z . Să căutăm funcţia generatoare a po= linoamelor (I).
∑
0
∞
z
n
n
!
P
n
=
∑
0
∞
z
n
n
!
(
x
+
a
)
n
−
1
(
x
+
a
+
n
(
b
−
a
)
2
)
=
∑
0
∞
z
n
n
!
(
x
+
a
)
n
+
b
−
−
a
2
∑
n
=
1
∞
n
z
n
n
!
(
x
+
a
)
n
−
1
=
e
z
(
x
+
a
)
+
b
−
a
2
z
e
z
(
x
+
a
)
=
(
1
+
b
−
a
2
z
)
e
z
a
e
z
x
∑
0
∞
 
z
n
n
!
P
n
=
∑
0
∞
 
z
n
n
!
(
x
+
a
)
n
−
1
x
+
a
+
n
(
b
−
a
)
2
=
∑
0
∞
 
z
n
n
!
(
x
+
a
)
n
+
b
−
−
a
2
∑
n
=
1
∞
 
n
z
n
n
!
(
x
+
a
)
n
−
1
=
e
z
(
x
+
a
)
+
b
−
a
2
z
e
z
(
x
+
a
)
=
1
+
b
−
a
2
z
e
z
a
e
z
x
{:[sum_(0)^(oo)(z^(n))/(n!)P_(n)=sum_(0)^(oo)(z^(n))/(n!)(x+a)^(n-1)(x+a+(n(b-a))/(2))],[=sum_(0)^(oo)(z^(n))/(n!)(x+a)^(n)+(b--a)/(2)sum_(n=1)^(oo)n(z^(n))/(n!)(x+a)^(n-1)],[=e^(z(x+a))+(b-a)/(2)ze^(z(x+a))],[=(1+(b-a)/(2)z)e^(za)e^(zx)]:} \begin{aligned}
\sum_{0}^{\infty} \frac{z^{n}}{n!} P_{n} & =\sum_{0}^{\infty} \frac{z^{n}}{n!}(x+a)^{n-1}\left(x+a+\frac{n(b-a)}{2}\right) \\
& =\sum_{0}^{\infty} \frac{z^{n}}{n!}(x+a)^{n}+\frac{b--a}{2} \sum_{n=1}^{\infty} n \frac{z^{n}}{n!}(x+a)^{n-1} \\
& =e^{z(x+a)}+\frac{b-a}{2} z e^{z(x+a)} \\
& =\left(1+\frac{b-a}{2} z\right) e^{z a} e^{z x}
\end{aligned} ∑ 0 ∞ z n n ! P n = ∑ 0 ∞ z n n ! ( x + a ) n − 1 ( x + a + n ( b − a ) 2 ) = ∑ 0 ∞ z n n ! ( x + a ) n + b − − a 2 ∑ n = 1 ∞ n z n n ! ( x + a ) n − 1 = e z ( x + a ) + b − a 2 z e z ( x + a ) = ( 1 + b − a 2 z ) e z a e z x
deci
F
(
z
)
=
(
1
+
b
−
a
2
z
)
e
z
a
F
(
z
)
=
1
+
b
−
a
2
z
e
z
a
F(z)=(1+(b-a)/(2)z)e^(za) F(z)=\left(1+\frac{b-a}{2} z\right) e^{z a} F ( z ) = ( 1 + b − a 2 z ) e z a
Să presupunem acum că
A
n
A
n
A_(n) A_{n} A n este diferit de zero oricare ar fi
n
=
2
,
3
,
…
n
=
2
,
3
,
…
n=2,3,dots n=2,3, \ldots n = 2 , 3 , … In acest caz din cauza omogeneitătii formulei (3) putem presupune
(5)
Punem acum
A
n
=
1
,
n
=
2
,
3
,
…
A
n
=
1
,
n
=
2
,
3
,
…
A_(n)=1,n=2,3,dots A_{n}=1, n=2,3, \ldots A n = 1 , n = 2 , 3 , …
B
n
=
α
n
x
+
β
n
B
n
=
α
n
x
+
β
n
B_(n)=alpha_(n)x+beta_(n) B_{n}=\alpha_{n} x+\beta_{n} B n = α n x + β n
C
n
′
=
λ
n
x
2
+
μ
n
x
+
v
n
C
n
′
=
λ
n
x
2
+
μ
n
x
+
v
n
C_(n)^(')=lambda_(n)x^(2)+mu_(n)x+v_(n) C_{n}^{\prime}=\lambda_{n} x^{2}+\mu_{n} x+v_{n} C n ′ = λ n x 2 + μ n x + v n
μ
n
,
β
n
,
λ
n
,
μ
n
,
v
n
μ
n
,
β
n
,
λ
n
,
μ
n
,
v
n
mu_(n),beta_(n),lambda_(n),mu_(n),v_(n) \mu_{n}, \beta_{n}, \lambda_{n}, \mu_{n}, v_{n} μ n , β n , λ n , μ n , v n depinzând numai de
n
n
n n n
Derivând relația (3), avem
(6)
(
n
+
B
n
′
)
P
n
−
1
+
(
B
n
(
n
−
1
)
+
C
n
)
P
n
−
2
+
C
n
(
n
−
2
)
P
n
−
3
=
0
n
+
B
n
′
P
n
−
1
+
B
n
(
n
−
1
)
+
C
n
P
n
−
2
+
C
n
(
n
−
2
)
P
n
−
3
=
0
(n+B_(n)^('))P_(n-1)+(B_(n)(n-1)+C_(n))P_(n-2)+C_(n)(n-2)P_(n-3)=0 \left(n+B_{n}^{\prime}\right) P_{n-1}+\left(B_{n}(n-1)+C_{n}\right) P_{n-2}+C_{n}(n-2) P_{n-3}=0 ( n + B n ′ ) P n − 1 + ( B n ( n − 1 ) + C n ) P n − 2 + C n ( n − 2 ) P n − 3 = 0 dar avem şi
(7)
P
n
−
1
+
B
n
−
1
P
n
−
2
+
C
n
−
1
P
n
−
3
=
0
P
n
−
1
+
B
n
−
1
P
n
−
2
+
C
n
−
1
P
n
−
3
=
0
P_(n-1)+B_(n-1)P_(n-2)+C_(n-1)P_(n-3)=0 P_{n-1}+B_{n-1} \mathrm{P}_{n-2}+C_{n-1} \mathrm{P}_{n-3}=0 P n − 1 + B n − 1 P n − 2 + C n − 1 P n − 3 = 0
Dacă relatiile (6), (7) sunt distincte se poate deduce, prin eliminarea lui
P
n
−
1
P
n
−
1
P_(n-1) P_{n-1} P n − 1 o relaţie de forma (4) și cădem peste cazul studiat mai înainte. Să presupunem deci că relaţiile (6), (7) sunt echivalente, trebue atunci ca:
(8)
n
+
B
n
′
=
B
(
n
−
1
)
+
C
n
′
B
n
−
1
=
C
n
(
n
−
2
)
C
n
−
1
(8)
n
+
B
n
′
=
B
(
n
−
1
)
+
C
n
′
B
n
−
1
=
C
n
(
n
−
2
)
C
n
−
1
{:(8)n+B_(n)^(')=(B(n-1)+C_(n)^('))/(B_(n-1))=(C_(n)(n-2))/(C_(n-1)):} \begin{equation*}
n+B_{n}^{\prime}=\frac{B(n-1)+C_{n}^{\prime}}{B_{n-1}}=\frac{C_{n}(n-2)}{C_{n-1}} \tag{8}
\end{equation*} (8) n + B n ′ = B ( n − 1 ) + C n ′ B n − 1 = C n ( n − 2 ) C n − 1
E clar că ambele relațiuni trebue să fie satisfăcute, căci dacă ar fi satisfăcută numai una am deduce o relaţie de forma
K
.
P
n
=
0
,
K
.
P
n
=
0
,
K.P_(n)=0, K . P_{n}=0, K . P n = 0 ,
care nu pot fi identic satisfăcute decât dacă
K
≡
0
K
≡
0
K-=0 K \equiv 0 K ≡ 0 .
Relaţiile (8) sunt nişte identităti în
x
x
x x x , trebue deci ca :
(9)
n
+
α
n
=
α
n
(
n
−
1
)
+
2
λ
n
α
n
−
1
=
β
n
(
n
−
1
)
+
μ
n
β
n
−
1
=
λ
n
λ
n
−
1
(
n
−
2
)
=
μ
n
μ
n
−
1
(
n
−
2
)
=
v
n
v
n
(
n
−
2
)
n
+
α
n
=
α
n
(
n
−
1
)
+
2
λ
n
α
n
−
1
=
β
n
(
n
−
1
)
+
μ
n
β
n
−
1
=
λ
n
λ
n
−
1
(
n
−
2
)
=
μ
n
μ
n
−
1
(
n
−
2
)
=
v
n
v
n
(
n
−
2
)
{:[n+alpha_(n)=(alpha^(n)(n-1)+2lambda_(n))/(alpha_(n-1))=(beta_(n)(n-1)+mu_(n))/(beta_(n-1))=(lambda_(n))/(lambda_(n-1))(n-2)=],[(mu_(n))/(mu_(n-1))(n-2)=(v_(n))/(v_(n))(n-2)]:} \begin{gathered}
n+\alpha_{n}=\frac{\alpha^{n}(n-1)+2 \lambda_{n}}{\alpha_{n-1}}=\frac{\beta_{n}(n-1)+\mu_{n}}{\beta_{n-1}}=\frac{\lambda_{n}}{\lambda_{n-1}}(n-2)= \\
\frac{\mu_{n}}{\mu_{n-1}}(n-2)=\frac{v_{n}}{v_{n}}(n-2)
\end{gathered} n + α n = α n ( n − 1 ) + 2 λ n α n − 1 = β n ( n − 1 ) + μ n β n − 1 = λ n λ n − 1 ( n − 2 ) = μ n μ n − 1 ( n − 2 ) = v n v n ( n − 2 )
A
n
=
1
/
сӑ
:
A
n
=
1
/
сӑ
:
A_(n)=1//" сӑ ": A_{n}=1 / \text { сӑ }: с ӑ A n = 1 / сӑ :
ceeace se obtine anulând coeficientul lui
x
n
x
n
x^(n) x^{n} x n . Se deduce imediat egalitatea
n
−
1
−
λ
n
=
λ
n
λ
n
−
1
(
n
−
2
)
n
−
1
−
λ
n
=
λ
n
λ
n
−
1
(
n
−
2
)
n-1-lambda_(n)=(lambda_(n))/(lambda_(n-1))(n-2) n-1-\lambda_{n}=\frac{\lambda_{n}}{\lambda_{n-1}}(n-2) n − 1 − λ n = λ n λ n − 1 ( n − 2 )
sau
n
−
1
λ
n
=
n
−
2
λ
n
−
1
+
1
n
−
1
λ
n
=
n
−
2
λ
n
−
1
+
1
(n-1)/(lambda_(n))=(n-2)/(lambda_(n)-1)+1 \frac{n-1}{\lambda_{n}}=\frac{n-2}{\lambda_{n}-1}+1 n − 1 λ n = n − 2 λ n − 1 + 1
din care
(11)
λ
n
=
(
n
−
1
)
λ
2
1
+
λ
2
(
n
−
2
)
λ
n
=
(
n
−
1
)
λ
2
1
+
λ
2
(
n
−
2
)
lambda_(n)=((n-1)lambda_(2))/(1+lambda_(2)(n-2)) \lambda_{n}=\frac{(n-1) \lambda_{2}}{1+\lambda_{2}(n-2)} λ n = ( n − 1 ) λ 2 1 + λ 2 ( n − 2 )
apoi se deduce
(12)
μ
n
=
(
n
−
1
)
μ
2
1
+
λ
2
(
n
−
2
)
,
ν
2
=
(
n
−
1
)
v
2
1
+
λ
2
(
n
−
2
)
(12)
μ
n
=
(
n
−
1
)
μ
2
1
+
λ
2
(
n
−
2
)
,
ν
2
=
(
n
−
1
)
v
2
1
+
λ
2
(
n
−
2
)
{:(12)mu_(n)=((n-1)mu_(2))/(1+lambda_(2)(n-2))","nu_(2)=((n-1)v_(2))/(1+lambda_(2)(n-2)):} \begin{equation*}
\mu_{n}=\frac{(n-1) \mu_{2}}{1+\lambda_{2}(n-2)}, \nu_{2}=\frac{(n-1) v_{2}}{1+\lambda_{2}(n-2)} \tag{12}
\end{equation*} (12) μ n = ( n − 1 ) μ 2 1 + λ 2 ( n − 2 ) , ν 2 = ( n − 1 ) v 2 1 + λ 2 ( n − 2 )
Din
(
10
)
:
Din
(
10
)
:
Din(10): \operatorname{Din}(10): Din ( 10 ) :
(13)
α
n
=
−
1
−
(
n
−
1
)
λ
2
1
+
λ
2
(
n
−
2
)
=
−
1
+
λ
2
(
2
n
−
3
)
1
+
λ
2
(
n
−
2
)
(13)
α
n
=
−
1
−
(
n
−
1
)
λ
2
1
+
λ
2
(
n
−
2
)
=
−
1
+
λ
2
(
2
n
−
3
)
1
+
λ
2
(
n
−
2
)
{:(13)alpha_(n)=-1-((n-1)lambda_(2))/(1+lambda_(2)(n-2))=-(1+lambda_(2)(2n-3))/(1+lambda_(2)(n-2)):} \begin{equation*}
\alpha_{n}=-1-\frac{(\mathrm{n}-1) \lambda_{2}}{1+\lambda_{2}(\mathrm{n}-2)}=-\frac{1+\lambda_{2}(2 n-3)}{1+\lambda_{2}(n-2)} \tag{13}
\end{equation*} (13) α n = − 1 − ( n − 1 ) λ 2 1 + λ 2 ( n − 2 ) = − 1 + λ 2 ( 2 n − 3 ) 1 + λ 2 ( n − 2 )
In fine din raportul al treilea şi al patrulea al relatiei (9) se deduce.
β
n
[
1
+
λ
2
(
n
−
2
)
∣
−
β
n
−
1
[
1
+
λ
2
(
n
−
3
)
]
+
μ
2
=
0
β
n
1
+
λ
2
(
n
−
2
)
∣
−
β
n
−
1
1
+
λ
2
(
n
−
3
)
+
μ
2
=
0
beta_(n)[1+lambda_(2)(n-2)∣-beta_(n-1)[1+lambda_(2)(n-3)]+mu_(2)=0:} \beta_{n}\left[1+\lambda_{2}(n-2) \mid-\beta_{n-1}\left[1+\lambda_{2}(n-3)\right]+\mu_{2}=0\right. β n [ 1 + λ 2 ( n − 2 ) ∣ − β n − 1 [ 1 + λ 2 ( n − 3 ) ] + μ 2 = 0
din care:
(14)
β
n
=
β
2
−
(
n
−
2
)
μ
2
1
+
λ
2
(
n
−
2
)
(14)
β
n
=
β
2
−
(
n
−
2
)
μ
2
1
+
λ
2
(
n
−
2
)
{:(14)beta_(n)=(beta_(2)-(n-2)mu_(2))/(1+lambda_(2)(n-2)):} \begin{equation*}
\beta_{n}=\frac{\beta_{2}-(n-2) \mu_{2}}{1+\lambda_{2}(n-2)} \tag{14}
\end{equation*} (14) β n = β 2 − ( n − 2 ) μ 2 1 + λ 2 ( n − 2 )
Formulele (11), (12), (13), (14) rczolvă problema şi se vede că po= linoamele verifică relația:
(15)
[
1
+
λ
(
n
−
2
)
]
P
n
+
[
−
x
[
1
+
λ
(
2
n
−
3
)
]
+
β
−
(
n
−
2
)
μ
]
P
n
−
1
+
(
n
−
1
)
(
λ
x
2
+
μ
x
+
v
)
P
n
−
2
=
0
(15)
[
1
+
λ
(
n
−
2
)
]
P
n
+
−
x
1
+
λ
2
n
−
3
+
β
−
(
n
−
2
)
μ
P
n
−
1
+
(
n
−
1
)
λ
x
2
+
μ
x
+
v
P
n
−
2
=
0
{:[(15){:[1+lambda(n-2)]P_(n)+[-x[1+lambda(2_(n)-3)]+beta-(n-2)mu]P_(n-1):}],[+(n-1)(lambdax^(2)+mu x+v)P_(n-2)=0]:} \begin{gather*}
{[1+\lambda(n-2)] P_{n}+\left[-x\left[1+\lambda\left(2_{n}-3\right)\right]+\beta-(n-2) \mu\right] P_{n-1}} \tag{15}\\
+(n-1)\left(\lambda x^{2}+\mu x+v\right) P_{n-2}=0
\end{gather*} (15) [ 1 + λ ( n − 2 ) ] P n + [ − x [ 1 + λ ( 2 n − 3 ) ] + β − ( n − 2 ) μ ] P n − 1 + ( n − 1 ) ( λ x 2 + μ x + v ) P n − 2 = 0
şi depind de patru constante arbitrare
λ
,
μ
,
ν
,
β
λ
,
μ
,
ν
,
β
lambda,mu,nu,beta \lambda, \mu, \nu, \beta λ , μ , ν , β , unde am suprimat indi= ccle 2 pentru simpliticare.
Se poate calcula acum functia generatoare. Pentru aceasta se înmulteşte relatia (15)
cu
z
n
−
2
(
n
−
2
)
!
cu
z
n
−
2
(
n
−
2
)
!
cu(z^(n-2))/((n-2)!) \mathrm{cu} \frac{z^{n-2}}{(n-2)!} cu z n − 2 ( n − 2 ) ! se face
n
=
2
,
3
,
…
n
=
2
,
3
,
…
n=2,3,dots n=2,3, \ldots n = 2 , 3 , … și se admă. Găsim astfel
d
z
3
Z
z
+
d
2
Z
d
z
2
[
1
−
z
(
2
λ
x
+
μ
)
]
+
d
Z
d
[
β
−
x
−
λ
x
+
(16)
+
Z
(
λ
x
2
+
μ
x
+
v
)
]
+
Z
(
λ
x
2
+
μ
x
+
v
)
=
0
Z
=
∑
n
=
0
∞
z
′
′
n
!
P
n
d
z
3
Z
z
+
d
2
Z
d
z
2
[
1
−
z
(
2
λ
x
+
μ
)
]
+
d
Z
d
[
β
−
x
−
λ
x
+
(16)
+
Z
λ
x
2
+
μ
x
+
v
+
Z
λ
x
2
+
μ
x
+
v
=
0
Z
=
∑
n
=
0
∞
 
z
′
′
n
!
P
n
{:[dz^(3)Zz+(d^(2)Z)/(dz^(2))[1-z(2lambda x+mu)]+(dZ)/(d)[beta-x-lambda x+],[(16){:+Z(lambdax^(2)+mu x+v)]+Z(lambdax^(2)+mu x+v)=0],[Z=sum_(n=0)^(oo)(z^(''))/(n!)P_(n)]:} \begin{align*}
d z^{3} Z z+ & \frac{d^{2} Z}{d z^{2}}[1-z(2 \lambda x+\mu)]+\frac{d Z}{d}[\beta-x-\lambda x+ \\
& \left.+Z\left(\lambda x^{2}+\mu x+v\right)\right]+Z\left(\lambda x^{2}+\mu x+v\right)=0 \tag{16}\\
Z & =\sum_{n=0}^{\infty} \frac{z^{\prime \prime}}{n!} P_{n}
\end{align*} d z 3 Z z + d 2 Z d z 2 [ 1 − z ( 2 λ x + μ ) ] + d Z d [ β − x − λ x + (16) + Z ( λ x 2 + μ x + v ) ] + Z ( λ x 2 + μ x + v ) = 0 Z = ∑ n = 0 ∞ z ′ ′ n ! P n
dacă facem
Z
=
e
z
x
F
(
z
)
Z
=
e
z
x
F
(
z
)
Z=e^(zx)F(z) Z=e^{z x} F(z) Z = e z x F ( z )
F
(
z
)
F
(
z
)
F(z) F(z) F ( z ) e functie de
z
z
z z z nu şi de
x
x
x x x ; ecuaţia devine :
unde :
d
Φ
d
z
+
x
Φ
=
0
d
Φ
d
z
+
x
Φ
=
0
(d Phi)/(dz)+x Phi=0 \frac{d \Phi}{d z}+x \Phi=0 d Φ d z + x Φ = 0
(17)
Φ
=
λ
z
F
′
′
+
(
1
−
λ
−
z
μ
)
F
′
+
(
z
v
+
β
+
μ
)
F
=
0
(17)
Φ
=
λ
z
F
′
′
+
(
1
−
λ
−
z
μ
)
F
′
+
(
z
v
+
β
+
μ
)
F
=
0
{:(17)Phi=lambda zF^('')+(1-lambda-z mu)F^(')+(zv+beta+mu)F=0:} \begin{equation*}
\Phi=\lambda z F^{\prime \prime}+(1-\lambda-z \mu) F^{\prime}+(z v+\beta+\mu) F=0 \tag{17}
\end{equation*} (17) Φ = λ z F ′ ′ + ( 1 − λ − z μ ) F ′ + ( z v + β + μ ) F = 0
Funcţia
F
F
F F F este prin urmare dată de ecuația (17).
5. Să presupunem
λ
=
μ
=
0
λ
=
μ
=
0
lambda=mu=0 \lambda=\mu=0 λ = μ = 0 , ecuația (17) se scrie
F
′
+
(
z
v
+
β
)
F
=
0
F
′
+
(
z
v
+
β
)
F
=
0
F^(')+(zv+beta)F=0 F^{\prime}+(z v+\beta) F=0 F ′ + ( z v + β ) F = 0
şi avem imediat
F
(
z
)
=
e
−
v
2
z
2
−
β
z
F
(
z
)
=
e
−
v
2
z
2
−
β
z
F(z)=e^(-(v)/(2)z^(2)-beta z) F(z)=e^{-\frac{v}{2} z^{2}-\beta z} F ( z ) = e − v 2 z 2 − β z
căci
P
0
=
1
P
0
=
1
P_(0)=1 P_{0}=1 P 0 = 1 . Polinoamele satisfac relatia
(
15
)
′
(
15
)
′
(15)^(') (15)^{\prime} ( 15 ) ′
P
n
−
(
x
−
β
)
P
l
−
1
+
(
n
−
1
)
∨
P
n
−
2
=
0
P
n
−
(
x
−
β
)
P
l
−
1
+
(
n
−
1
)
∨
P
n
−
2
=
0
P_(n)-(x-beta)P_(l-1)+(n-1)vvP_(n-2)=0 P_{n}-(x-\beta) P_{l-1}+(n-1) \vee P_{n-2}=0 P n − ( x − β ) P l − 1 + ( n − 1 ) ∨ P n − 2 = 0
Aceste polinoame se reduc la polinoamele lui Hermite. Intr'adevăr functia generatoare a polinoamelor
H
n
H
n
H_(n) H_{n} H n este
e
z
2
4
+
z
x
=
∑
0
∞
z
n
n
!
H
n
(
x
)
e
z
2
4
+
z
x
=
∑
0
∞
 
z
n
n
!
H
n
(
x
)
e^((z^(2))/(4)+zx)=sum_(0)^(oo)(z^(n))/(n!)H_(n)(x) e^{\frac{z^{2}}{4}+z x}=\sum_{0}^{\infty} \frac{z^{n}}{n!} H_{n}(x) e z 2 4 + z x = ∑ 0 ∞ z n n ! H n ( x )
iar functia generatoare a polinoamelor noastre este :
e
−
v
2
z
2
−
β
z
+
z
x
=
e
(
−
2
v
z
)
2
4
+
2
(
x
−
β
)
e
−
v
2
z
2
−
β
z
+
z
x
=
e
(
−
2
v
z
)
2
4
+
2
(
x
−
β
)
e^(-(v)/(2)z^(2)-beta z+zx)=e^(((sqrt(-2vz))^(2))/(4)+2(x-beta)) e^{-\frac{v}{2} z^{2}-\beta z+z x}=e^{\frac{(\sqrt{-2 v z})^{2}}{4}+2(x-\beta)} e − v 2 z 2 − β z + z x = e ( − 2 v z ) 2 4 + 2 ( x − β )
deci
(15)
P
n
(
x
)
=
(
−
2
v
)
n
H
n
(
x
−
β
−
2
v
)
(15)
P
n
(
x
)
=
(
−
2
v
)
n
H
n
x
−
β
−
2
v
{:(15)P_(n)(x)=(sqrt(-2v))^(n)H_(n)((x-beta)/(sqrt(-2v))):} \begin{equation*}
P_{n}(x)=(\sqrt{-2 v})^{n} H_{n}\left(\frac{x-\beta}{\sqrt{-2 v}}\right) \tag{15}
\end{equation*} (15) P n ( x ) = ( − 2 v ) n H n ( x − β − 2 v )
Să presupunem acum că
λ
λ
lambda \lambda λ , u nu sunt ambele nule și fie
ω
ω
omega \omega ω una din rădăcinile ecuațici
(18)
λ
z
2
−
μ
z
+
v
=
0
(18)
λ
z
2
−
μ
z
+
v
=
0
{:(18)lambdaz^(2)-mu z+v=0:} \begin{equation*}
\lambda z^{2}-\mu z+v=0 \tag{18}
\end{equation*} (18) λ z 2 − μ z + v = 0
Să puncm
F
=
e
w
z
F
1
F
=
e
w
z
F
1
F=e^(wz)F_(1) F=e^{w z} F_{1} F = e w z F 1
ecuatia (17) devine
(19)
λ
z
F
′
′
1
+
(
2
ω
λ
z
−
z
μ
+
1
−
λ
)
F
′
1
+
[
ω
(
1
−
λ
)
+
β
+
μ
]
F
=
0
λ
z
F
′
′
1
+
(
2
ω
λ
z
−
z
μ
+
1
−
λ
)
F
′
1
+
[
ω
(
1
−
λ
)
+
β
+
μ
]
F
=
0
lambda zF^('')_(1)+(2omega lambda z-z mu+1-lambda)F^(')_(1)+[omega(1-lambda)+beta+mu]F=0 \lambda z F^{\prime \prime}{ }_{1}+(2 \omega \lambda z-z \mu+1-\lambda) F^{\prime}{ }_{1}+[\omega(1-\lambda)+\beta+\mu] F=0 λ z F ′ ′ 1 + ( 2 ω λ z − z μ + 1 − λ ) F ′ 1 + [ ω ( 1 − λ ) + β + μ ] F = 0 și după definitia ce am dat funcției generatoare trebue să căutăm soluția holomorfă în jurul originei şi care pentru
z
=
0
z
=
0
z=0 z=0 z = 0 este egală cu 1. Ori accasta este totdeauna posibil în general.
Inainte de a merge mai departe să reamintim câteva rezultate : Ecuațiile
(20)
x
y
′
′
+
(
γ
−
x
)
y
′
−
α
y
=
0
x
y
′
′
+
(
γ
−
x
)
y
′
−
α
y
=
0
xy^('')+(gamma-x)y^(')-alpha y=0 x y^{\prime \prime}+(\gamma-x) y^{\prime}-\alpha y=0 x y ′ ′ + ( γ − x ) y ′ − α y = 0 (Ecuatia lui Kummer)
admit solutiunile
x
y
′
′
+
γ
y
′
−
y
=
0
(Ecuaţia lui Bessel)
x
y
′
′
+
γ
y
′
−
y
=
0
(Ecuaţia lui Bessel)
xy^('')+gammay^(')-y=0quad" (Ecuaţia lui Bessel) " x y^{\prime \prime}+\gamma y^{\prime}-y=0 \quad \text { (Ecuaţia lui Bessel) } ţ x y ′ ′ + γ y ′ − y = 0 (Ecuaţia lui Bessel)
G
(
α
,
γ
,
x
)
=
∑
n
=
0
∞
α
(
α
+
1
)
…
(
α
+
n
−
1
)
γ
(
γ
+
1
)
…
(
γ
+
n
−
1
)
⋅
x
n
n
!
T
(
γ
,
x
)
=
∑
0
∞
1
γ
(
γ
+
1
)
…
(
γ
+
n
−
1
)
⋅
x
n
n
!
G
(
α
,
γ
,
x
)
=
∑
n
=
0
∞
 
α
(
α
+
1
)
…
(
α
+
n
−
1
)
γ
(
γ
+
1
)
…
(
γ
+
n
−
1
)
⋅
x
n
n
!
T
(
γ
,
x
)
=
∑
0
∞
 
1
γ
(
γ
+
1
)
…
(
γ
+
n
−
1
)
⋅
x
n
n
!
{:[G(alpha","gamma","x)=sum_(n=0)^(oo)(alpha(alpha+1)dots(alpha+n-1))/(gamma(gamma+1)dots(gamma+n-1))*(x^(n))/(n!)],[T(gamma","x)=sum_(0)^(oo)(1)/(gamma(gamma+1)dots(gamma+n-1))*(x^(n))/(n!)]:} \begin{gathered}
G(\alpha, \gamma, x)=\sum_{n=0}^{\infty} \frac{\alpha(\alpha+1) \ldots(\alpha+n-1)}{\gamma(\gamma+1) \ldots(\gamma+n-1)} \cdot \frac{x^{n}}{n!} \\
T(\gamma, x)=\sum_{0}^{\infty} \frac{1}{\gamma(\gamma+1) \ldots(\gamma+n-1)} \cdot \frac{x^{n}}{n!}
\end{gathered} G ( α , γ , x ) = ∑ n = 0 ∞ α ( α + 1 ) … ( α + n − 1 ) γ ( γ + 1 ) … ( γ + n − 1 ) ⋅ x n n ! T ( γ , x ) = ∑ 0 ∞ 1 γ ( γ + 1 ) … ( γ + n − 1 ) ⋅ x n n !
cari în general sunt nişte functiuni întregi
Facem acum mai multe ipoteze :
a)
λ
≠
0
λ
≠
0
lambda!=0 \lambda \neq 0 λ ≠ 0 , ecuaţia (18) având rădăcinile distincte.
Prin transformarea
z
=
λ
t
μ
−
2
ω
λ
z
=
λ
t
μ
−
2
ω
λ
z=(lambda t)/(mu-2omega lambda) z=\frac{\lambda t}{\mu-2 \omega \lambda} z = λ t μ − 2 ω λ
ecuatia (19) devine
deci
t
d
2
F
1
d
t
2
+
(
1
−
λ
λ
−
t
)
d
F
1
λ
t
−
ω
(
1
−
λ
)
+
β
+
μ
2
ω
λ
−
μ
F
1
=
0
t
d
2
F
1
d
t
2
+
1
−
λ
λ
−
t
d
F
1
λ
t
−
ω
(
1
−
λ
)
+
β
+
μ
2
ω
λ
−
μ
F
1
=
0
t(d^(2)F_(1))/(dt^(2))+((1-lambda)/(lambda)-t)(dF_(1))/(lambda t)-(omega(1-lambda)+beta+mu)/(2omega lambda-mu)F_(1)=0 t \frac{d^{2} F_{1}}{d t^{2}}+\left(\frac{1-\lambda}{\lambda}-t\right) \frac{d F_{1}}{\lambda t}-\frac{\omega(1-\lambda)+\beta+\mu}{2 \omega \lambda-\mu} F_{1}=0 t d 2 F 1 d t 2 + ( 1 − λ λ − t ) d F 1 λ t − ω ( 1 − λ ) + β + μ 2 ω λ − μ F 1 = 0
F
1
=
G
(
ω
(
1
−
λ
)
+
β
+
μ
2
ω
λ
−
μ
,
1
−
λ
λ
,
(
μ
−
2
ω
λ
)
z
λ
)
F
1
=
G
ω
(
1
−
λ
)
+
β
+
μ
2
ω
λ
−
μ
,
1
−
λ
λ
,
(
μ
−
2
ω
λ
)
z
λ
F_(1)=G((omega(1-lambda)+beta+mu)/(2omega lambda-mu),(1-lambda)/(lambda),((mu-2omega lambda)z)/(lambda)) F_{1}=G\left(\frac{\omega(1-\lambda)+\beta+\mu}{2 \omega \lambda-\mu}, \frac{1-\lambda}{\lambda}, \frac{(\mu-2 \omega \lambda) z}{\lambda}\right) F 1 = G ( ω ( 1 − λ ) + β + μ 2 ω λ − μ , 1 − λ λ , ( μ − 2 ω λ ) z λ )
b)
λ
≠
0
λ
≠
0
lambda!=0 \lambda \neq 0 λ ≠ 0 , ecuația (18) având rădăcinile cgale, deci
Facem
μ
=
2
ω
λ
μ
=
2
ω
λ
mu=2omega lambda \mu=2 \omega \lambda μ = 2 ω λ
şi avem
z
=
−
λ
˙
t
ω
(
1
+
λ
)
+
β
z
=
−
λ
˙
t
ω
(
1
+
λ
)
+
β
z=-((lambda^(˙))t)/(omega(1+lambda)+beta) z=-\frac{\dot{\lambda} t}{\omega(1+\lambda)+\beta} z = − λ ˙ t ω ( 1 + λ ) + β
t
d
2
F
1
d
t
2
+
1
−
λ
λ
d
F
1
d
t
−
F
1
=
0
t
d
2
F
1
d
t
2
+
1
−
λ
λ
d
F
1
d
t
−
F
1
=
0
t(d^(2)F_(1))/(dt^(2))+(1-lambda)/(lambda)(dF_(1))/(dt)-F_(1)=0 t \frac{d^{2} F_{1}}{d t^{2}}+\frac{1-\lambda}{\lambda} \frac{d F_{1}}{d t}-F_{1}=0 t d 2 F 1 d t 2 + 1 − λ λ d F 1 d t − F 1 = 0
şi deci
F
1
=
T
(
1
−
λ
λ
,
−
ω
(
1
+
λ
)
+
β
λ
z
)
F
1
=
T
1
−
λ
λ
,
−
ω
(
1
+
λ
)
+
β
λ
z
F_(1)=T((1-lambda)/(lambda),-(omega(1+lambda)+beta)/(lambda)z) F_{1}=T\left(\frac{1-\lambda}{\lambda},-\frac{\omega(1+\lambda)+\beta}{\lambda} z\right) F 1 = T ( 1 − λ λ , − ω ( 1 + λ ) + β λ z )
c)
λ
=
c
λ
=
c
lambda=c \lambda=\mathrm{c} λ = c , averm
w
=
v
μ
w
=
v
μ
w=(v)/( mu) w=\frac{v}{\mu} w = v μ
şi ecur."a devine
(
1
−
z
μ
)
F
1
′
+
(
v
μ
+
β
+
μ
)
F
1
=
0
(
1
−
z
μ
)
F
1
′
+
v
μ
+
β
+
μ
F
1
=
0
(1-z mu)F_(1)^(')+((v)/( mu)+beta+mu)F_(1)=0 (1-z \mu) F_{1}^{\prime}+\left(\frac{v}{\mu}+\beta+\mu\right) F_{1}=0 ( 1 − z μ ) F 1 ′ + ( v μ + β + μ ) F 1 = 0
deci
F
1
=
(
1
−
μ
z
)
ν
μ
+
β
+
μ
μ
F
1
=
(
1
−
μ
z
)
ν
μ
+
β
+
μ
μ
F_(1)=(1-mu z)^(((nu )/(mu)+beta+mu)/(mu)) F_{1}=(1-\mu z)^{\frac{\frac{\nu}{\mu}+\beta+\mu}{\mu}} F 1 = ( 1 − μ z ) ν μ + β + μ μ
Functia generatoare în acest caz este
e
v
μ
z
+
z
x
(
1
−
μ
z
)
v
μ
+
β
+
μ
μ
e
v
μ
z
+
z
x
(
1
−
μ
z
)
v
μ
+
β
+
μ
μ
e^((v)/( mu)z+zx)(1-mu z)((v)/( mu)+beta+mu)/(mu) e^{\frac{v}{\mu} z+z x}(1-\mu z) \frac{\frac{v}{\mu}+\beta+\mu}{\mu} e v μ z + z x ( 1 − μ z ) v μ + β + μ μ
Cazul studiat în § 3 intră aci. Dacă v=o avem nişte polinoame
P
n
P
n
P_(n) P_{n} P n care sunt tocmai polinoamele
Q
n
(
x
,
λ
)
Q
n
(
x
,
λ
)
Q_(n)(x,lambda) Q_{n}(\mathrm{x}, \lambda) Q n ( x , λ ) studiate de noi într'o lucrare ante= rioară
2
2
^(2) { }^{2} 2 )
Nu mai insist asupra cazurilor particulare ce pot proveni de exemplu din faptul că
1
−
λ
λ
1
−
λ
λ
(1-lambda)/(lambda) \frac{1-\lambda}{\lambda} 1 − λ λ
este un număr întreg negativ. Acest caz se deduce din teoria ecuaților lui Kummer și Bessel.
6. Polinoamele
P
n
P
n
P_(n) P_{n} P n studiate de noi se pot ataşa funcţiei hipergeome= trice și a confluentelor ei. Vom da resultatele fără a insista asupra detaliilor calculelor. Dīı formulele (2), (15) deducem că polinomul
P
n
P
n
P_(n) P_{n} P n satisface ecua= ţia diferentială lincară.
(21)
(
λ
x
2
+
μ
x
+
ν
)
y
′
′
+
[
−
x
(
1
+
λ
(
2
n
−
3
)
)
+
β
−
(
n
−
2
)
μ
∣
y
′
+
+
n
[
1
+
λ
(
n
−
2
)
]
y
=
0
λ
x
2
+
μ
x
+
ν
y
′
′
+
−
x
(
1
+
λ
(
2
n
−
3
)
)
+
β
−
(
n
−
2
)
μ
∣
y
′
+
+
n
[
1
+
λ
(
n
−
2
)
]
y
=
0
{:[(lambdax^(2)+mu x+nu)y^('')+[-x(1+lambda(2n-3))+beta-(n-2)mu∣y^(')+:}],[+n[1+lambda(n-2)]y=0]:} \begin{gathered}
\left(\lambda x^{2}+\mu x+\nu\right) y^{\prime \prime}+\left[-x(1+\lambda(2 n-3))+\beta-(n-2) \mu \mid y^{\prime}+\right. \\
+n[1+\lambda(n-2)] y=0
\end{gathered} ( λ x 2 + μ x + ν ) y ′ ′ + [ − x ( 1 + λ ( 2 n − 3 ) ) + β − ( n − 2 ) μ ∣ y ′ + + n [ 1 + λ ( n − 2 ) ] y = 0
Deosebim cazurile :
a)
λ
=
0
,
μ
≠
0
λ
=
0
,
μ
≠
0
lambda=0,mu!=0 \lambda=0, \mu \neq 0 λ = 0 , μ ≠ 0 , prin transformarea
t
=
μ
x
+
v
μ
x
t
=
μ
x
+
v
μ
x
t=(mu x+v)/(mu^(x)) t=\frac{\mu x+v}{\mu^{x}} t = μ x + v μ x
ecuatia (21) devine
t
y
′
′
+
[
−
t
+
v
μ
′
+
β
μ
−
(
n
−
2
)
]
y
′
+
n
y
=
0
,
ε
=
v
μ
2
+
β
μ
t
y
′
′
+
−
t
+
v
μ
′
+
β
μ
−
(
n
−
2
)
y
′
+
n
y
=
0
,
ε
=
v
μ
2
+
β
μ
ty^('')+[-t+(v)/(mu^('))+(beta )/(mu)-(n-2)]y^(')+ny=0,quad epsi=(v)/(mu^(2))+(beta )/(mu) t y^{\prime \prime}+\left[-t+\frac{v}{\mu^{\prime}}+\frac{\beta}{\mu}-(n-2)\right] y^{\prime}+n y=0, \quad \varepsilon=\frac{v}{\mu^{2}}+\frac{\beta}{\mu} t y ′ ′ + [ − t + v μ ′ + β μ − ( n − 2 ) ] y ′ + n y = 0 , ε = v μ 2 + β μ
deci
P
n
=
(
−
1
)
n
μ
n
(
ξ
+
1
)
ξ
(
ξ
−
1
)
…
(
ξ
−
n
+
2
)
n
!
G
(
−
n
,
ξ
−
n
+
2
,
μ
x
+
ν
μ
2
)
P
n
=
(
−
1
)
n
μ
n
(
ξ
+
1
)
ξ
(
ξ
−
1
)
…
(
ξ
−
n
+
2
)
n
!
G
−
n
,
ξ
−
n
+
2
,
μ
x
+
ν
μ
2
P_(n)=((-1)^(n)mu^(n)(xi+1)xi(xi-1)dots(xi-n+2))/(n!)G(-n,xi-n+2,(mu x+nu)/(mu^(2))) P_{n}=\frac{(-1)^{n} \mu^{n}(\xi+1) \xi(\xi-1) \ldots(\xi-n+2)}{n!} G\left(-n, \xi-n+2, \frac{\mu x+\nu}{\mu^{2}}\right) P n = ( − 1 ) n μ n ( ξ + 1 ) ξ ( ξ − 1 ) … ( ξ − n + 2 ) n ! G ( − n , ξ − n + 2 , μ x + ν μ 2 )
observând că coeficientul lui
x
n
x
n
x^(n) x^{n} x n este 1 ,
b)
λ
=
0
,
μ
=
0
λ
=
0
,
μ
=
0
lambda=0,mu=0 \lambda=0, \mu=0 λ = 0 , μ = 0 . Acesta c cazul polinoamelor lui Hermite.
Să presupunem
ν
=
1
2
,
β
=
0
ν
=
1
2
,
β
=
0
nu=(1)/(2),beta=0 \nu=\frac{1}{2}, \beta=0 ν = 1 2 , β = 0 , ecuatia devine
y
′
′
−
2
x
y
′
+
−
2
n
y
=
0
.
y
′
′
−
2
x
y
′
+
−
2
n
y
=
0
.
y^('')-2xy^(')+-2ny=0. y^{\prime \prime}-2 x y^{\prime}+-2 n y=0 . y ′ ′ − 2 x y ′ + − 2 n y = 0 .
Prin transformarea
x
2
=
t
x
2
=
t
x^(2)=t x^{2}=t x 2 = t
se obtine
t
y
′
′
+
(
1
2
−
t
)
y
′
+
n
2
y
=
0
t
y
′
′
+
1
2
−
t
y
′
+
n
2
y
=
0
ty^('')+((1)/(2)-t)y^(')+(n)/(2)y=0 t y^{\prime \prime}+\left(\frac{1}{2}-t\right) y^{\prime}+\frac{n}{2} y=0 t y ′ ′ + ( 1 2 − t ) y ′ + n 2 y = 0
care ne dă pentru
n
n
n n n par, solutia
H
n
(
x
)
=
(
−
1
)
n
2
⋅
1
⋅
3
⋅
5
…
(
n
−
1
)
2
n
2
G
(
−
n
2
,
1
2
,
x
2
)
H
n
(
x
)
=
(
−
1
)
n
2
⋅
1
⋅
3
⋅
5
…
(
n
−
1
)
2
n
2
G
−
n
2
,
1
2
,
x
2
H_(n)(x)=((-1)^((n)/(2))*1*3*5dots(n-1))/(2^((n)/(2)))G(-(n)/(2),(1)/(2),x^(2)) H_{n}(x)=\frac{(-1)^{\frac{n}{2}} \cdot 1 \cdot 3 \cdot 5 \ldots(n-1)}{2^{\frac{n}{2}}} G\left(-\frac{n}{2}, \frac{1}{2}, x^{2}\right) H n ( x ) = ( − 1 ) n 2 ⋅ 1 ⋅ 3 ⋅ 5 … ( n − 1 ) 2 n 2 G ( − n 2 , 1 2 , x 2 )
Pentru
n
n
n n n impar luăm întâi ca nouă funcție
y
=
x
z
y
=
x
z
y=xz y=x z y = x z
şi obtinem, urmând acelaş procedcu:
H
n
(
x
)
=
(
−
1
)
n
−
1
2
⋅
1
⋅
3
⋅
5
⋯
n
2
n
−
1
2
×
G
(
−
n
−
1
2
,
3
2
,
x
2
)
H
n
(
x
)
=
(
−
1
)
n
−
1
2
⋅
1
⋅
3
⋅
5
⋯
n
2
n
−
1
2
×
G
−
n
−
1
2
,
3
2
,
x
2
H_(n)(x)=((-1)^((n-1)/(2))*1*3*5cdots n)/(2^((n-1)/(2)))xx G(-(n-1)/(2),(3)/(2),x^(2)) H_{n}(x)=\frac{(-1)^{\frac{n-1}{2}} \cdot 1 \cdot 3 \cdot 5 \cdots n}{2^{\frac{n-1}{2}}} \times G\left(-\frac{n-1}{2}, \frac{3}{2}, x^{2}\right) H n ( x ) = ( − 1 ) n − 1 2 ⋅ 1 ⋅ 3 ⋅ 5 ⋯ n 2 n − 1 2 × G ( − n − 1 2 , 3 2 , x 2 )
Pentru cazul general vom avea deci, după
(
15
)
′
′
(
15
)
′
′
(15)^('') (15)^{\prime \prime} ( 15 ) ′ ′ :
P
n
(
x
)
=
{
(
−
1
)
n
2
,
1.3
.5
…
(
n
−
1
)
(
−
v
)
n
G
(
−
n
2
,
1
2
,
−
(
x
−
β
)
2
2
v
)
(
−
1
)
n
−
1
2
,
1.3
.5
.
…
n
.
(
−
v
)
n
−
1
(
x
−
β
)
G
(
−
n
−
1
2
,
3
2
,
−
(
x
−
β
)
2
2
v
)
P
n
(
x
)
=
(
−
1
)
n
2
,
1.3
.5
…
(
n
−
1
)
(
−
v
)
n
G
−
n
2
,
1
2
,
−
(
x
−
β
)
2
2
v
(
−
1
)
n
−
1
2
,
1.3
.5
.
…
n
.
(
−
v
)
n
−
1
(
x
−
β
)
G
−
n
−
1
2
,
3
2
,
−
(
x
−
β
)
2
2
v
P_(n)(x)={[(-1)^((n)/(2))","1.3.5 dots(n-1)(sqrt(-v))^(n)G(-(n)/(2),(1)/(2),-((x-beta)^(2))/(2v))],[(-1)^((n-1)/(2))","1.3.5.dots n.(sqrt()-v)^(n-1)(x-beta)G(-(n-1)/(2),(3)/(2),-((x-beta)^(2))/(2v))]:} P_{n}(x)=\left\{\begin{array}{l}(-1)^{\frac{n}{2}}, 1.3 .5 \ldots(n-1)(\sqrt{-v})^{n} G\left(-\frac{n}{2}, \frac{1}{2},-\frac{(x-\beta)^{2}}{2 v}\right) \\ (-1)^{\frac{n-1}{2}}, 1.3 .5 . \ldots n .(\sqrt{ }-v)^{n-1}(x-\beta) G\left(-\frac{n-1}{2}, \frac{3}{2},-\frac{(x-\beta)^{2}}{2 v}\right)\end{array}\right. P n ( x ) = { ( − 1 ) n 2 , 1.3 .5 … ( n − 1 ) ( − v ) n G ( − n 2 , 1 2 , − ( x − β ) 2 2 v ) ( − 1 ) n − 1 2 , 1.3 .5 . … n . ( − v ) n − 1 ( x − β ) G ( − n − 1 2 , 3 2 , − ( x − β ) 2 2 v )
după cum
n
n
n n n este par sau impar.
c)
λ
≠
0
λ
≠
0
lambda!=0 \lambda \neq 0 λ ≠ 0 şi ecuatia (18) are două rădăcini distincte
w
1
,
w
2
w
1
,
w
2
w_(1),w_(2) w_{1}, w_{2} w 1 , w 2 .
Făcând transformarea
x
=
(
w
1
−
w
2
)
t
−
w
1
x
=
w
1
−
w
2
t
−
w
1
x=(w_(1)-w_(2))t-w_(1) x=\left(w_{1}-w_{2}\right) t-w_{1} x = ( w 1 − w 2 ) t − w 1
avem ecuatia in
t
t
t t t :
t
(
1
−
t
)
y
′
′
+
[
ρ
+
1
+
λ
(
2
n
−
3
)
λ
t
]
y
′
−
n
λ
[
1
+
λ
(
n
−
2
)
]
y
=
0
ρ
=
ω
1
[
1
+
λ
(
2
n
−
3
)
]
+
β
−
(
n
−
2
)
μ
λ
(
ω
2
−
ω
1
)
t
(
1
−
t
)
y
′
′
+
ρ
+
1
+
λ
(
2
n
−
3
)
λ
t
y
′
−
n
λ
[
1
+
λ
(
n
−
2
)
]
y
=
0
ρ
=
ω
1
[
1
+
λ
(
2
n
−
3
)
]
+
β
−
(
n
−
2
)
μ
λ
ω
2
−
ω
1
{:[t(1-t)y^('')+[rho+(1+lambda(2n-3))/(lambda)t]y^(')-(n)/( lambda)[1+lambda(n-2)]y=0],[rho=(omega_(1)[1+lambda(2n-3)]+beta-(n-2)mu)/(lambda(omega_(2)-omega_(1)))]:} \begin{gathered}
t(1-\mathrm{t}) y^{\prime \prime}+\left[\rho+\frac{1+\lambda(2 n-3)}{\lambda} t\right] y^{\prime}-\frac{n}{\lambda}[1+\lambda(n-2)] y=0 \\
\rho=\frac{\omega_{1}[1+\lambda(2 n-3)]+\beta-(n-2) \mu}{\lambda\left(\omega_{2}-\omega_{1}\right)}
\end{gathered} t ( 1 − t ) y ′ ′ + [ ρ + 1 + λ ( 2 n − 3 ) λ t ] y ′ − n λ [ 1 + λ ( n − 2 ) ] y = 0 ρ = ω 1 [ 1 + λ ( 2 n − 3 ) ] + β − ( n − 2 ) μ λ ( ω 2 − ω 1 )
care e de forma hipergeometrică :
t
(
1
−
t
)
y
′
′
+
[
ζ
−
(
ξ
+
η
+
1
)
t
]
y
′
−
ξ
η
y
=
0
t
(
1
−
t
)
y
′
′
+
[
ζ
−
(
ξ
+
η
+
1
)
t
]
y
′
−
ξ
η
y
=
0
t(1-t)y^('')+[zeta-(xi+eta+1)t]y^(')-xi eta y=0 t(1-t) y^{\prime \prime}+[\zeta-(\xi+\eta+1) t] y^{\prime}-\xi \eta y=0 t ( 1 − t ) y ′ ′ + [ ζ − ( ξ + η + 1 ) t ] y ′ − ξ η y = 0
cu solutia
Φ
(
ξ
,
η
,
ζ
,
t
)
=
∑
n
=
0
∞
ξ
(
ξ
+
1
)
…
(
ξ
+
n
−
1
)
η
(
η
+
1
)
…
(
η
+
n
−
1
)
τ
(
ζ
+
1
)
…
(
ζ
+
n
−
1
)
f
n
n
!
Φ
(
ξ
,
η
,
ζ
,
t
)
=
∑
n
=
0
∞
 
ξ
(
ξ
+
1
)
…
(
ξ
+
n
−
1
)
η
(
η
+
1
)
…
(
η
+
n
−
1
)
τ
(
ζ
+
1
)
…
(
ζ
+
n
−
1
)
f
n
n
!
Phi(xi,eta,zeta,t)=sum_(n=0)^(oo)(xi(xi+1)dots(xi+n-1)eta(eta+1)dots(eta+n-1))/(tau(zeta+1)dots(zeta+n-1))(f^(n))/(n!) \Phi(\xi, \eta, \zeta, t)=\sum_{n=0}^{\infty} \frac{\xi(\xi+1) \ldots(\xi+n-1) \eta(\eta+1) \ldots(\eta+n-1)}{\tau(\zeta+1) \ldots(\zeta+n-1)} \frac{f^{n}}{n!} Φ ( ξ , η , ζ , t ) = ∑ n = 0 ∞ ξ ( ξ + 1 ) … ( ξ + n − 1 ) η ( η + 1 ) … ( η + n − 1 ) τ ( ζ + 1 ) … ( ζ + n − 1 ) f n n !
Polinomul căutat e deci de forma :
P
n
=
(
−
1
)
n
λ
n
ρ
(
ρ
+
1
)
…
(
ρ
+
n
−
1
)
(
ω
1
−
ω
2
)
n
n
!
[
λ
(
n
−
2
)
+
1
]
[
λ
(
n
−
1
)
+
1
]
…
[
λ
(
2
ω
−
3
)
+
1
]
Φ
(
−
n
,
−
1
+
λ
(
n
−
2
)
λ
,
ρ
,
x
1
+
ω
1
ω
1
−
ω
2
)
P
n
=
(
−
1
)
n
λ
n
ρ
(
ρ
+
1
)
…
(
ρ
+
n
−
1
)
ω
1
−
ω
2
n
n
!
[
λ
(
n
−
2
)
+
1
]
[
λ
(
n
−
1
)
+
1
]
…
[
λ
(
2
ω
−
3
)
+
1
]
Φ
−
n
,
−
1
+
λ
(
n
−
2
)
λ
,
ρ
,
x
1
+
ω
1
ω
1
−
ω
2
{:[P_(n)=((-1)^(n)lambda^(n)rho(rho+1)dots(rho+n-1)(omega_(1)-omega_(2))^(n))/(n![lambda(n-2)+1][lambda(n-1)+1]dots[lambda(2omega-3)+1])],[Phi(-n,-(1+lambda(n-2))/(lambda),rho,(x_(1)+omega_(1))/(omega_(1)-omega_(2)))]:} \begin{gathered}
P_{n}=\frac{(-1)^{n} \lambda^{n} \rho(\rho+1) \ldots(\rho+n-1)\left(\omega_{1}-\omega_{2}\right)^{n}}{n![\lambda(n-2)+1][\lambda(n-1)+1] \ldots[\lambda(2 \omega-3)+1]} \\
\Phi\left(-n,-\frac{1+\lambda(n-2)}{\lambda}, \rho, \frac{x_{1}+\omega_{1}}{\omega_{1}-\omega_{2}}\right)
\end{gathered} P n = ( − 1 ) n λ n ρ ( ρ + 1 ) … ( ρ + n − 1 ) ( ω 1 − ω 2 ) n n ! [ λ ( n − 2 ) + 1 ] [ λ ( n − 1 ) + 1 ] … [ λ ( 2 ω − 3 ) + 1 ] Φ ( − n , − 1 + λ ( n − 2 ) λ , ρ , x 1 + ω 1 ω 1 − ω 2 )
d)
λ
≠
0
λ
≠
0
lambda!=0 \lambda \neq 0 λ ≠ 0 , şi ecuatia (18) are o rădăcină dublă
w
=
μ
2
λ
w
=
μ
2
λ
w=(mu)/(2lambda) w=\frac{\mu}{2 \lambda} w = μ 2 λ .
Facem
t
=
−
λ
(
x
+
ω
)
ω
(
1
+
λ
)
+
β
t
=
−
λ
(
x
+
ω
)
ω
(
1
+
λ
)
+
β
t=-(lambda(x+omega))/(omega(1+lambda)+beta) t=-\frac{\lambda(x+\omega)}{\omega(1+\lambda)+\beta} t = − λ ( x + ω ) ω ( 1 + λ ) + β
acuatia devine :
t
2
y
′
′
−
[
1
+
1
+
λ
(
2
n
−
3
)
λ
t
]
y
′
+
n
λ
[
1
+
λ
(
n
−
2
)
]
y
=
0
t
2
y
′
′
−
1
+
1
+
λ
(
2
n
−
3
)
λ
t
y
′
+
n
λ
[
1
+
λ
(
n
−
2
)
]
y
=
0
t^(2)y^('')-[1+(1+lambda(2n-3))/(lambda)t]y^(')+(n)/( lambda)[1+lambda(n-2)]y=0 t^{2} y^{\prime \prime}-\left[1+\frac{1+\lambda(2 n-3)}{\lambda} t\right] y^{\prime}+\frac{n}{\lambda}[1+\lambda(n-2)] y=0 t 2 y ′ ′ − [ 1 + 1 + λ ( 2 n − 3 ) λ t ] y ′ + n λ [ 1 + λ ( n − 2 ) ] y = 0
Această ecuațic e de forma:
t
2
y
′
′
−
[
1
−
(
ξ
+
η
+
1
)
t
]
y
′
+
ξ
η
y
=
0
t
2
y
′
′
−
[
1
−
(
ξ
+
η
+
1
)
t
]
y
′
+
ξ
η
y
=
0
t^(2)y^('')-[1-(xi+eta+1)t]y^(')+xi eta y=0 t^{2} y^{\prime \prime}-[1-(\xi+\eta+1) t] y^{\prime}+\xi \eta y=0 t 2 y ′ ′ − [ 1 − ( ξ + η + 1 ) t ] y ′ + ξ η y = 0
căreia am ataşat seria divergentă
1
1
^(1) { }^{1} 1 ).
T
(
ξ
,
η
,
l
)
=
∑
ω
=
0
∞
ξ
(
ξ
+
1
)
…
(
ξ
+
n
−
1
)
η
(
η
+
1
)
…
(
η
+
n
−
1
)
n
!
p
n
T
(
ξ
,
η
,
l
)
=
∑
ω
=
0
∞
 
ξ
(
ξ
+
1
)
…
(
ξ
+
n
−
1
)
η
(
η
+
1
)
…
(
η
+
n
−
1
)
n
!
p
n
T(xi,eta,l)=sum_(omega=0)^(oo)(xi(xi+1)dots(xi+n-1)eta(eta+1)dots(eta+n-1))/(n!)p^(n) T(\xi, \eta, l)=\sum_{\omega=0}^{\infty} \frac{\xi(\xi+1) \ldots(\xi+n-1) \eta(\eta+1) \ldots(\eta+n-1)}{n!} p^{n} T ( ξ , η , l ) = ∑ ω = 0 ∞ ξ ( ξ + 1 ) … ( ξ + n − 1 ) η ( η + 1 ) … ( η + n − 1 ) n ! p n
Rezultă dar, că polinomul e de forma
P
n
=
(
−
1
)
n
[
μ
(
1
+
λ
)
+
2
λ
β
)
n
2
n
λ
n
[
λ
(
n
−
2
)
+
1
]
[
λ
(
n
−
3
)
+
1
]
…
(
λ
+
1
)
(
1
−
λ
)
T
(
−
n
,
−
1
+
λ
(
n
−
2
)
λ
,
2
λ
2
x
+
λ
μ
μ
(
1
+
λ
)
+
2
λ
β
)
P
n
=
(
−
1
)
n
[
μ
(
1
+
λ
)
+
2
λ
β
)
n
2
n
λ
n
[
λ
(
n
−
2
)
+
1
]
[
λ
(
n
−
3
)
+
1
]
…
(
λ
+
1
)
(
1
−
λ
)
T
−
n
,
−
1
+
λ
(
n
−
2
)
λ
,
2
λ
2
x
+
λ
μ
μ
(
1
+
λ
)
+
2
λ
β
{:[P_(n)=((-1)^(n)[mu(1+lambda)+2lambda beta)^(n))/(2^(n)lambda^(n)[lambda(n-2)+1][lambda(n-3)+1]dots(lambda+1)(1-lambda))],[T(-n,-(1+lambda(n-2))/(lambda),(2lambda^(2)x+lambda mu)/(mu(1+lambda)+2lambda beta))]:} \begin{aligned}
P_{n}= & \frac{(-1)^{n}[\mu(1+\lambda)+2 \lambda \beta)^{n}}{2^{n} \lambda^{n}[\lambda(n-2)+1][\lambda(n-3)+1] \ldots(\lambda+1)(1-\lambda)} \\
& T\left(-n,-\frac{1+\lambda(n-2)}{\lambda}, \frac{2 \lambda^{2} x+\lambda \mu}{\mu(1+\lambda)+2 \lambda \beta}\right)
\end{aligned} P n = ( − 1 ) n [ μ ( 1 + λ ) + 2 λ β ) n 2 n λ n [ λ ( n − 2 ) + 1 ] [ λ ( n − 3 ) + 1 ] … ( λ + 1 ) ( 1 − λ ) T ( − n , − 1 + λ ( n − 2 ) λ , 2 λ 2 x + λ μ μ ( 1 + λ ) + 2 λ β )
In fine pentru ca studiul de fată să fie complet, revenind la pros blema initială, ar trebui să examinăm cazul când unii din
A
n
A
n
A_(n) A_{n} A n sunt nuli. Pentru a nu lungi mult acest articol, vom da numai indicatiuni asupra acestui caz urmând ca să publicăm ulterior un studiu eomplet.
Să demonstrăm întâi lema:
Dacă polinomul
f
(
x
)
f
(
x
)
f(x) f(\mathrm{x}) f ( x ) este de forma
(22)
f
(
x
)
=
(
x
+
a
)
n
(
x
+
b
)
m
n
>
1
,
m
>
1
,
a
≠
b
f
(
x
)
=
(
x
+
a
)
n
(
x
+
b
)
m
n
>
1
,
m
>
1
,
a
≠
b
f(x)=(x+a)^(n)(x+b)^(m)quad n > 1,m > 1,a!=b f(x)=(x+a)^{n}(x+b)^{m} \quad n>1, m>1, a \neq b f ( x ) = ( x + a ) n ( x + b ) m n > 1 , m > 1 , a ≠ b , nici una din derivatele
f
′
,
f
′
′
,
…
f
(
m
+
n
−
3
)
f
′
,
f
′
′
,
…
f
(
m
+
n
−
3
)
f^('),f^(''),dotsf^((m+n-3)) f^{\prime}, f^{\prime \prime}, \ldots f^{(m+n-3)} f ′ , f ′ ′ , … f ( m + n − 3 ) nu poate
f
i
f
i
fi f i f i de aceeaş formă. Cu alte cuvinte : ecuatia
Vezi : T. Popoviciu loc. cit. p. 6.
(23)
f
(
k
)
(
x
)
=
0
k
=
1
,
2
,
…
m
+
n
−
3
f
(
k
)
(
x
)
=
0
k
=
1
,
2
,
…
m
+
n
−
3
f^((k))(x)=0quad k=1,2,dots m+n-3 f^{(k)}(x)=0 \quad k=1,2, \ldots m+n-3 f ( k ) ( x ) = 0 k = 1 , 2 , … m + n − 3
are cel putin trei rădăcini distincte.
Dacă
a
,
b
a
,
b
a,b a, b a , b , sunt reali lema rezultă din teorema lui Rolle. Ori în cazul general se poate face o transformare
y
=
u
x
+
v
y
=
u
x
+
v
y=ux+v y=u x+v y = u x + v
u
,
v
u
,
v
u,v u, v u , v fiind reali sau complexi, astfel ca rădăcinile ecuației transformate să fie reale. Cum o astfel de transformare nu schimbă caracterul ecuației (23) rezultă că lema este adevărată oricare ar fi
a
,
b
;
a
≠
b
a
,
b
;
a
≠
b
a,b;a!=b a, b ; a \neq b a , b ; a ≠ b .
Dacă acum
A
n
=
0
A
n
=
0
A_(n)=0 A_{n}=0 A n = 0 , din ecuațiile (2), (3) scoatem
(24)
P
n
−
1
=
(
x
+
a
)
k
(
x
+
b
)
n
−
1
−
k
(24)
P
n
−
1
=
(
x
+
a
)
k
(
x
+
b
)
n
−
1
−
k
{:(24)P_(n-1)=(x+a)^(k)(x+b)^(n-1-k):} \begin{equation*}
P_{n-1}=(x+a)^{k}(x+b)^{n-1-k} \tag{24}
\end{equation*} (24) P n − 1 = ( x + a ) k ( x + b ) n − 1 − k
şi dacă încă
A
n
′
=
0
,
n
′
>
n
A
n
′
=
0
,
n
′
>
n
A_(n^('))=0,n^(') > n A_{n^{\prime}}=0, n^{\prime}>n A n ′ = 0 , n ′ > n
P
n
′
−
1
=
(
x
+
a
′
)
k
′
(
x
+
b
′
)
n
′
−
1
−
k
′
P
n
′
−
1
=
x
+
a
′
k
′
x
+
b
′
n
′
−
1
−
k
′
P_(n^(')-1)=(x+a^('))^(k^('))(x+b^('))^(n^(')-1-k^(')) P_{n^{\prime}-1}=\left(\mathrm{x}+\mathrm{a}^{\prime}\right)^{k^{\prime}}\left(\mathrm{x}+b^{\prime}\right)^{n^{\prime}-1-k^{\prime}} P n ′ − 1 = ( x + a ′ ) k ′ ( x + b ′ ) n ′ − 1 − k ′
Dar
P
n
−
1
P
n
−
1
P_(n-1) P_{n-1} P n − 1 este o derivată a lui
P
n
′
−
1
P
n
′
−
1
P_(n^(')-1) P_{n^{\prime}-1} P n ′ − 1 , afară de un factor constant; deci relația precedentă e compatibilă cu (24), numai dacă
k
=
0
,
k
=
1
k
=
0
,
k
=
1
k=0,k=1 k=0, k=1 k = 0 , k = 1 .
Să presupunem dar că
(25)
P
n
=
(
x
+
a
)
k
(
x
+
b
)
n
−
k
(25)
P
n
=
(
x
+
a
)
k
(
x
+
b
)
n
−
k
{:(25)P_(n)=(x+a)^(k)(x+b)^(n-k):} \begin{equation*}
P_{n}=(\mathrm{x}+a)^{k}(\mathrm{x}+b)^{n-k} \tag{25}
\end{equation*} (25) P n = ( x + a ) k ( x + b ) n − k
se vede că dacă mai mulți
A
n
A
n
A_(n) \mathrm{A}_{n} A n sunt nuli există un
n
n
n n n , cel puţin, pentru care
p
n
p
n
p_(n) p_{n} p n e de forma (25) unde
k
=
0
k
=
0
k=0 k=0 k = 0 sau 1 .
Pe ecuația (15) se vede că se poate întâmpla ca un singur
A
n
A
n
A_(n) A_{n} A n să fie nul. Dacă
λ
=
−
1
n
−
1
λ
=
−
1
n
−
1
lambda=-(1)/(n-1) \lambda=-\frac{1}{n-1} λ = − 1 n − 1
P
n
P
n
P_(n) P_{n} P n verifică ecuatia diferentială:
(
−
x
2
n
−
1
+
μ
x
+
v
)
Y
′
+
(
n
n
−
1
x
+
β
−
(
n
−
1
)
μ
)
Y
=
0
−
x
2
n
−
1
+
μ
x
+
v
Y
′
+
n
n
−
1
x
+
β
−
(
n
−
1
)
μ
Y
=
0
(-(x^(2))/(n-1)+mu x+v)Y^(')+((n)/(n-1)x+beta-(n-1)mu)Y=0 \left(-\frac{x^{2}}{n-1}+\mu x+v\right) Y^{\prime}+\left(\frac{n}{n-1} x+\beta-(n-1) \mu\right) Y=0 ( − x 2 n − 1 + μ x + v ) Y ′ + ( n n − 1 x + β − ( n − 1 ) μ ) Y = 0
Dar
P
n
P
n
P_(n) P_{n} P n fiind luat sub forma (25), avem
P
n
′
=
(
x
+
a
)
k
−
1
(
x
+
b
)
n
−
1
−
k
(
n
x
+
k
(
b
−
a
)
+
n
a
)
P
n
′
=
(
x
+
a
)
k
−
1
(
x
+
b
)
n
−
1
−
k
(
n
x
+
k
(
b
−
a
)
+
n
a
)
P_(n^('))=(x+a)^(k-1)(x+b)^(n-1-k)(nx+k(b-a)+na) P_{n^{\prime}}=(\mathrm{x}+a)^{k-1}(\mathrm{x}+b)^{n-1-k}(n \mathrm{x}+k(b-a)+n a) P n ′ = ( x + a ) k − 1 ( x + b ) n − 1 − k ( n x + k ( b − a ) + n a )
unde presupunem
k
>
1
,
n
−
k
≥
k
k
>
1
,
n
−
k
≥
k
k > 1,n-k >= k k>1, n-k \geq k k > 1 , n − k ≥ k .
Se vede numai decât că
μ
=
−
a
+
b
n
−
1
,
v
=
−
a
b
n
−
1
,
β
=
−
(
a
+
b
)
+
k
(
b
−
a
)
+
n
a
n
−
1
μ
=
−
a
+
b
n
−
1
,
v
=
−
a
b
n
−
1
,
β
=
−
(
a
+
b
)
+
k
(
b
−
a
)
+
n
a
n
−
1
mu=-(a+b)/(n-1),v=-(ab)/(n-1),beta=-(a+b)+(k(b-a)+na)/(n-1) \mu=-\frac{a+b}{n-1}, v=-\frac{a b}{n-1}, \beta=-(a+b)+\frac{k(b-a)+n a}{n-1} μ = − a + b n − 1 , v = − a b n − 1 , β = − ( a + b ) + k ( b − a ) + n a n − 1
In ce priveşte funcţia generatoare suntem în cazul a) dela Nr. 5. Putem lua
ω
=
b
ω
=
b
omega=b \omega=b ω = b , şi ecuaţia în
t
t
t t t a lui
F
1
F
1
F_(1) F_{1} F 1 este
(26)
t
d
2
F
1
d
t
2
−
(
n
+
t
)
d
F
1
d
t
+
k
F
1
=
0
(26)
t
d
2
F
1
d
t
2
−
(
n
+
t
)
d
F
1
d
t
+
k
F
1
=
0
{:(26)t(d^(2)F_(1))/(dt^(2))-(n+t)(dF_(1))/(dt)+kF_(1)=0:} \begin{equation*}
t \frac{d^{2} F_{1}}{d t^{2}}-(n+t) \frac{d F_{1}}{d t}+k F_{1}=0 \tag{26}
\end{equation*} (26) t d 2 F 1 d t 2 − ( n + t ) d F 1 d t + k F 1 = 0
t
==
(
a
−
b
)
z
t
==
(
a
−
b
)
z
t==(a-b)z t==(a-b) z t == ( a − b ) z
Ecuaţia (26) are soluţia
C
∑
i
=
0
k
k
(
k
−
1
)
…
(
k
−
i
+
1
)
n
(
n
−
1
)
…
(
n
−
i
+
1
)
⋅
t
i
i
!
C
∑
i
=
0
k
 
k
(
k
−
1
)
…
(
k
−
i
+
1
)
n
(
n
−
1
)
…
(
n
−
i
+
1
)
⋅
t
i
i
!
Csum_(i=0)^(k)(k(k-1)dots(k-i+1))/(n(n-1)dots(n-i+1))*(t^(i))/(i!) C \sum_{i=0}^{k} \frac{k(k-1) \ldots(k-i+1)}{n(n-1) \ldots(n-i+1)} \cdot \frac{t^{i}}{i!} C ∑ i = 0 k k ( k − 1 ) … ( k − i + 1 ) n ( n − 1 ) … ( n − i + 1 ) ⋅ t i i !
Tinand deci seamă de forma pe care trebue s'o aibe functia genem ratoare rezultă că
F
1
=
∑
i
=
0
k
k
(
k
−
1
)
…
(
k
−
i
+
1
)
n
(
n
−
1
)
…
(
n
−
i
+
1
)
⋅
(
a
−
b
)
2
z
i
i
!
F
1
=
∑
i
=
0
k
 
k
(
k
−
1
)
…
(
k
−
i
+
1
)
n
(
n
−
1
)
…
(
n
−
i
+
1
)
⋅
(
a
−
b
)
2
z
i
i
!
F_(1)=sum_(i=0)^(k)(k(k-1)dots(k-i+1))/(n(n-1)dots(n-i+1))*((a-b)^(2)z^(i))/(i!) F_{1}=\sum_{i=0}^{k} \frac{k(k-1) \ldots(k-i+1)}{n(n-1) \ldots(n-i+1)} \cdot \frac{(a-b)^{2} z^{i}}{i!} F 1 = ∑ i = 0 k k ( k − 1 ) … ( k − i + 1 ) n ( n − 1 ) … ( n − i + 1 ) ⋅ ( a − b ) 2 z i i !
Paris, 22 Octombrie 1928.