Asupra unor ecuaţii funcţionale

Abstract

 

Autori

T. Popoviciu
Institutul de Calcul

Cuvinte cheie

PDF

Versiunea scanată.

Versiunea compilată din LaTeX.

Citați articolul în forma

T. Popoviciu, Asupra unor ecuaţii funcţionale, Studii și cercetări științifice (Cluj), Seria I, tom. VI, nr. 34, pag. 37-49 (1955).

Despre acest articol

Journal

Studii şi cercetări matematice

Publisher Name

Academia Republicii S.R.

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

Referințe

Lucrare in format HTML

Asupra unor ecuatii functionale

n+1n+1

f0(x),F1(x),,fn(x),f_{0}\left(x\right),F_{1}\left(x\right),\ldots,f_{n}\left(x\right),

EE.

EE se pot gasi n+1n+1 ci,i=0,1,,c_{i},i=0,1,\ldots, avem i=0ncifi(x)=0\sum_{i=0}^{n}c_{i}f_{i}\left(x\right)=0, oricare ar fi xEx\in E.

EE n+1n+1

V(f0,f1,,fnx1,x2,,xn+1)=fj1(xj)i,j=1,2,,n+1.V\binom{f_{0},f_{1},\ldots,f_{n}}{x_{1},x_{2},\ldots,x_{n+1}}=\left\|f_{j-1}\left(x_{j}\right)\right\|_{i,j=1,2,\ldots,n+1}.

pe punctele xE,i=1,2,,n+1x\in E,i=1,2,\ldots,n+1 ii jj

V(1,x,x2,,xnx1,x2,,xn+1)=V(x1,x2,,xn+1)V\binom{1,x,x^{2},\ldots,x^{n}}{x_{1},x_{2},\ldots,x_{n+1}}=V\left(x_{1},x_{2},\ldots,x_{n+1}\right)

x1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1},

[x1,x2,,xn+1;f]=V(1,x,,xn1,fx1,x2,,xn+1)V(x1,x2,,xn+1)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\frac{V\binom{1,x,\ldots,x^{n-1},f}{x_{1},x_{2},\ldots,x_{n+1}}}{V\left(x_{1},x_{2},\ldots,x_{n+1}\right)}

f(x)f\left(x\right) x1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1}.

EE

V(f0,f1,,fnx1,x2,,xn+1)=0V\binom{f_{0},f_{1},\ldots,f_{n}}{x_{1},x_{2},\ldots,x_{n+1}}=0

xiE,i=1,2,,n+1x_{i}\in E,i=1,2,\ldots,n+1.

Pentru n=0n=0 adevarata pentru nn si pentru n+1n+1

fi(x),i=0,1,,n1f_{i}\left(x\right),i=0,1,\ldots,n-1

exista nn puncte xiE,i=1,2,,nx_{i}\in E,i=1,2,\ldots,n,

V(f0,f1,,fn1x1,x2,,xn)0V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{1},x_{2},\ldots,x_{n}}\neq 0

Insa

V(f0,f1,,fnx1,x2,,xn,x)=0V\binom{f_{0},f_{1},\ldots,f^{n}}{x_{1},x_{2},\ldots,x_{n},x}=0

oricare ar fi xEx\in E.

2. EE EE. n+1n+1 puncte xi,i=1,2,,n+1x_{i},i=1,2,\ldots,n+1 EE

V(f0,f1,,fnx1,x2,,xn+1)0.V\binom{f_{0},f_{1},\ldots,f_{n}}{x_{1},x_{2},\ldots,x_{n+1}}\neq 0.

punctele distincte x1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1} EE. pe multimea EE.

orice sistem de n+1n+1 xi,i=1,2,,n+1x_{i},i=1,2,\ldots,n+1, n+1n+1 yi,i=1,2,,n+1y_{i},i=1,2,\ldots,n+1

yy, xi,i=1,2,,n+1x_{i},i=1,2,\ldots,n+1.

3. EE [a,b]\left[a,b\right].

cat punctele x1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1} in ordinea x1<x2<xn+1x_{1}<x_{2}<x_{n+1} gasi punctele xi,xi′′,i=1,2,,n+1x_{i}^{\prime},x_{i}^{\prime\prime},i=1,2,\ldots,n+1 EE

x1<x2<<xn+1,x1′′<x2′′<<xn+1′′x_{1}^{\prime}<x_{2}^{\prime}<\ldots<x_{n+1}^{\prime},\ x_{1}^{\prime\prime}<x_{2}^{\prime\prime}<\ldots<x_{n+1}^{\prime\prime}

si

V(f0,f1,,fnx1,x2,,xn+1)>0,V(f0,f1,,fnx1′′,x2′′,,xn+1′′)0.V\binom{f_{0},f_{1},\ldots,f_{n}}{x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime}}>0,\ V\binom{f_{0},f_{1},\ldots,f_{n}}{x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{n+1}^{\prime\prime}}\leq 0.

xi=λxi′′+(1λ)xi,i=1,2,,n+1x_{i}=\lambda x_{i}^{\prime\prime}+\left(1-\lambda\right)x_{i}^{\prime},i=1,2,\ldots,n+1, λ\lambda pentru λ[0,1]\lambda\in\left[0,1\right], λ=0\lambda=0,

λ=1\lambda=1. Exista deci un λ,0<λ<1\lambda,0<\lambda<1 astfel de λ\lambda xix_{i}

h(x;f0,f1,,fn)=V(f0,f1,,fnx,x+h,x+2h,,x+nh)\bigtriangleup_{h}\left(x;f_{0},f_{1},\ldots,f_{n}\right)=V\binom{f_{0},f_{1},\ldots,f_{n}}{x,x+h,x+2h,\ldots,x+nh}

xix_{i} pentru orice x,x+nh[a,b]x,x+nh\in\left[a,b\right].

pentru functiile (n2)\left(n-2\right)

f0(x)\displaystyle f_{0}\left(x\right) =(1+x)(2+x),f1(x)=1+x,f2,x(1x),x[21]\displaystyle=\left(1+x\right)\left(2+x\right),f_{1}\left(x\right)=1+x,\ f_{2},-x\left(1-x\right),\ \ \ \ \ \ \ \ \ \ \ \ x\in\left[-2-1\right]
f0(x)\displaystyle f_{0}\left(x\right) =f1(x)=f2(x)=0,x[1,1]\displaystyle=f_{1}\left(x\right)=f_{2}\left(x\right)=0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in\left[-1,1\right]
f0(x)\displaystyle f_{0}\left(x\right) =1x,f1(x)=x(1x),f2(x)=(1x)(2x),x[1,2]\displaystyle=1-x,\ f_{1}\left(x\right)=-x\left(1-x\right),\ f_{2}\left(x\right)=\left(1-x\right)\left(2-x\right),\ \ \ \ x\in\left[1,2\right]

[2,2]\left[-2,2\right] h(x;f0,f1,f2)=0\bigtriangleup_{h}\left(x;f_{0},f_{1},f_{2}\right)=0, oricare ar fi 2x,x+2h2-2\leq x,x+2h\leq 2.

Totusi functiile f0(x),f1(x),f2(x)f_{0}\left(x\right),f_{1}\left(x\right),f_{2}\left(x\right) [2,2]\left[-2,2\right]

5.

fi(x)=xi,i=0,1,,n1f_{i}\left(x\right)=x^{i}\ ,i=0,1,\ldots,n-1
1!2!,,(n1)!hn(n1)2i=0n(1)ni(ni)fn(x+ih).1!2!,\ldots,\left(n-1\right)!h^{\frac{n\left(n-1\right)}{2}}\sum_{i=0}^{n}\left(-1\right)^{n-i}\binom{n}{i}f_{n}\left(x+ih\right).
i=0n(1)ni(ni)f(x+ih)=0,x,x+nh[a,b]\sum_{i=0}^{n}\left(-1\right)^{n-i}\binom{n}{i}f\left(x+ih\right)=0,\ x,x+nh\in\left[a,b\right]

n1n-1. f(x)f\left(x\right) f(x)f\left(x\right) [a,b]\left[a,b\right].

pe intervalul [a,b]\left[a,b\right].

h(f0,f1,,fn1,f)=0,x,x+nh[a,b]\bigtriangleup_{h}\left(f_{0},f_{1},\ldots,f_{n-1},f\right)=0,\ \ x,x+nh\in\left[a,b\right]

6.

Sa considerma n+2n+2 puncte x1,x2,,xn+2x_{1},x_{2},\ldots,x_{n+2} 2n+12n+1

f0(x1)f_{0}\left(x_{1}\right) f1(x1)f_{1}\left(x_{1}\right) \cdots fn1(x1)f_{n-1}\left(x_{1}\right) f(x1)f\left(x_{1}\right) f0(x1)f_{0}\left(x_{1}\right) f1(x1)f_{1}\left(x_{1}\right) \cdots fn1(x1)f_{n-1}\left(x_{1}\right)
f0(x2)f_{0}\left(x_{2}\right) f1(x2)f_{1}\left(x_{2}\right) \cdots fn1(x2)f_{n-1}\left(x_{2}\right) f(x2)f\left(x_{2}\right) 0 0 \cdots 0
f0(x3)f_{0}\left(x_{3}\right) f1(x3)f_{1}\left(x_{3}\right) \cdots fn1(x3)f_{n-1}\left(x_{3}\right) f(x3)f\left(x_{3}\right) 0 0 \cdots 0
\cdots \cdots
f0(xi1)f_{0}\left(x_{i-1}\right) f1(xi1)f_{1}\left(x_{i-1}\right) \cdots fn1(xi1)f_{n-1}\left(x_{i-1}\right) f(xi1)f\left(x_{i-1}\right) 0 0 \cdots 0
f0(xi)f_{0}\left(x_{i}\right) f1(xi)f_{1}\left(x_{i}\right) \cdots fn1(xi)f_{n-1}\left(x_{i}\right) f(xi)f\left(x_{i}\right) f0(xi)f_{0}\left(x_{i}\right) f1(xi)f_{1}\left(x_{i}\right) \cdots fn1(xi)f_{n-1}\left(x_{i}\right)
f0(xi+1)f_{0}\left(x_{i+1}\right) f1(xi+1)f_{1}\left(x_{i+1}\right) \cdots fn1(xi+1)f_{n-1}\left(x_{i+1}\right) f(xi+1)f\left(x_{i+1}\right) 0 0 \cdots 0
f0(xi+2)f_{0}\left(x_{i+2}\right) f1(xi+2)f_{1}\left(x_{i+2}\right) \cdots fn1(xi+2)f_{n-1}\left(x_{i+2}\right) f(xi+2)f\left(x_{i+2}\right) 0 0 \cdots 0
\cdots \cdots
f0(xn+1)f_{0}\left(x_{n+1}\right) f1(xn+1)f_{1}\left(x_{n+1}\right) \cdots fn1(xn+1)f_{n-1}\left(x_{n+1}\right) f(xn+1)f\left(x_{n+1}\right) 0 0 \cdots 0
f0(xn+2)f_{0}\left(x_{n+2}\right) f1(xn+2)f_{1}\left(x_{n+2}\right) \cdots fn(xn+2)f_{n}\left(x_{n+2}\right) f(xn+2)f\left(x_{n+2}\right) f0(xn+2)f_{0}\left(x_{n+2}\right) f1(xn+2)f_{1}\left(x_{n+2}\right) \cdots fn1(xn+2)f_{n-1}\left(x_{n+2}\right)
0 0 \cdots 0 0 f0(x2)f_{0}\left(x_{2}\right) f1(x2)f_{1}\left(x_{2}\right) \cdots fn1(x2)f_{n-1}\left(x_{2}\right)
0 0 \cdots 0 0 f0(x3)f_{0}\left(x_{3}\right) f1(x3)f_{1}\left(x_{3}\right) \cdots fn1(x3)f_{n-1}\left(x_{3}\right)
\cdots \cdots
0 0 \cdots 0 0 f0(xli1)f_{0}\left(xli-1\right) f1(xi1)f_{1}\left(x_{i-1}\right) \cdots fn1(xi1)f_{n-1}\left(x_{i-1}\right)
0 0 \cdots 0 0 f0(xi+1)f_{0}\left(x_{i+1}\right) f??(xi+1)f_{??}\left(x_{i+1}\right) \cdots fn1(xi+1)f_{n-1}\left(x_{i+1}\right)
0 0 \cdots 0 0 f0(xi+2)f_{0}\left(x_{i+2}\right) f1(xi+2)f_{1}\left(x_{i+2}\right) \cdots fn1(xi+2)f_{n-1}\left(x_{i+2}\right)
\cdots \cdots
0 0 \cdots 0 0 f0(xn+1)f_{0}\left(x_{n+1}\right) f1(xn+1)f_{1}\left(x_{n+1}\right) \cdots fn1(xn+???)f_{n-1}\left(x_{n+???}\right)

2in+12\leq i\leq n+1 i=2i=2 si i=n+1i=n+1.

n+1n+1

V(f0,f1,,fn1x2,x3,,xn+1)V(f0,f1,,fn1x1,x2,,xi1,xi+1,xi+2,,xn+2)=\displaystyle V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{2},x_{3},\ldots,x_{n+1}}V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{1},x_{2},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots,x_{n+2}}=
|\displaystyle| =V(f0,f1,,fn1x2,x3,,xi1,xi+1,xi+2,,xn+2)V(f0,f1,,fn1,fx1,x2,,xn+1)+\displaystyle=V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{2},x_{3},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots,x_{n+2}}V\binom{f_{0},f_{1},\ldots,f_{n-1},f}{x_{1},x_{2},\ldots,x_{n+1}}+
+V(f0,f1,,fn1x1,x2,,xi1,xi+1,xi+2,,x???+1)V(f0,f1,,fn1,fx2,x3,,xn+2)\displaystyle+V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{1},x_{2},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots,x_{???+1}}V\binom{f_{0},f_{1},\ldots,f_{n-1},f}{x_{2},x_{3},\ldots,x_{n+2}}

i=2i=2 sau i=n+1i=n+1.

(xn+2x1)[x1,x2,,xi1,xi+1,xi+2,,xn+2;f]\displaystyle\left(x_{n+2}-x_{1}\right)\left[x_{1},x_{2},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots,x_{n+2};f\right]
=(xix1)[x1,x2,,xn+1;f]+(xn+2xi)[x2,x3,,xn+2;f].\displaystyle=\left(x_{i}-x_{1}\right)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]+\left(x_{n+2}-x_{i}\right)\left[x_{2},x_{3},\ldots,x_{n+2};f\right].

7. finita x1,x2,,xm(mn+1)x_{1},x_{2},\ldots,x_{m}\left(m\geq n+1\right) [a,b]\left[a,b\right]

V(f0,f1,,fn1,fnxi,xi+1,,xi+n)=0,i=1,2,,mnV\binom{f_{0},f_{1},\ldots,f_{n-1},f_{n}}{x_{i},x_{i+1},\ldots,x_{i+n}}=0,\ i=1,2,\ldots,m-n

f(x)f\left(x\right)

V(f0,f1,,fn1,fx1,x2,,xn+1)=0V\binom{f_{0},f_{1},\ldots,f_{n-1,}f}{x_{1},x_{2},\ldots,x_{n+1}}=0

x1,x2,,xn+1[a,b]x_{1},x_{2},\ldots,x_{n+1}\in\left[a,b\right]

Punctele xx xrxsx_{r}-x_{s}

grup de n+1n+1 intervalul [a,b]\left[a,b\right].

f(x)f\left(x\right) [a,b]\left[a,b\right], orice grup de n+1n+1

[a,b]\left[a,b\right],

f(x)=c0f0(x)+c1f1(x)++cn1fn1(x),f\left(x\right)=c_{0}f_{0}\left(x\right)+c_{1}f_{1}\left(x\right)+\cdots+c_{n-1}f_{n-1}\left(x\right),

unde ci,i=0,1,,n1c_{i},\ i=0,1,\ldots,n-1,

pentru nn\ x1,x2,,xnx_{1},x_{2},\ldots,x_{n} va  variabil xn+1=xx_{n+1}=x

1.

f0(x)=sinx,f,(x)=cosxf_{0}\left(x\right)=\sin x,\ f,\ \left(x\right)=\cos x

[a,b]\left[a,b\right] unde 0a<bπ,ba<π=π0\leq a<b\leq\pi,b-a<\pi=\allowbreak\pi.

f(x)2coshf(x+h)=f(x+2h)=0f\left(x\right)-2\cosh f\left(x+h\right)=f\left(x+2h\right)=0

c0sinx+c1cosxc_{0}\sin x+c_{1}\cos x.

2.

f0(x)=1,f(x)=sinx,f2(x)=cosxf_{0}\left(x\right)=1,\ f\left(x\right)=\sin x,\ f_{2}\left(x\right)=\cos x

[a,b]\left[a,b\right] 0a<b2π,ba<2π\leq a<b\leq 2\pi,\ b-a<2\pi.

f(x)f(x+3h)=(2cosh+1)[f(x+h)f(x+2h)]f\left(x\right)-f\left(x+3h\right)=\left(2\cosh+1\right)\left[f\left(x+h\right)-f\left(x+2h\right)\right]

este deci de forma c0+c1sinx+c2cosxc_{0}+c_{1}\sin x+c_{2}\cos x.

sinx,cosx,sin2x,cos2x,,sinnx,cosnx\sin x,\cos x,\sin 2x,\cos 2x,\ldots,\sin nx,\cos nx

sau

1,sinx,cosx,sin2x,cos2x,,sinnx,cosnx.1,\sin x,\cos x,\sin 2x,\cos 2x,\ldots,\sin nx,\cos nx.

9. f(x)f\left(x\right) [a,b]\left[a,b\right] [a,b]\left[a,b\right]

|f(x)|<M,x[a,b].\left|f\left(x\right)\right|<M,x\in\left[a,b\right].

functia f(x)f\left(x\right) [a,b]\left[a,b\right]

x0x_{0} α1,α2,,αn1,n1\alpha_{1},\alpha_{2},\ldots,\alpha_{n-1},n-1 x0x_{0} [a,b]\left[a,b\right]

Avem

V(f0,f1,,fn2α1,α2,,αn1,x0)=λ0.V\binom{f_{0},f_{1},\ldots,f_{n-2}}{\alpha_{1},\alpha_{2},\ldots,\alpha_{n-1},x_{0}}=\lambda\neq 0.

V(f0,f1,,fn1x1,x2,,xa???)V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{1},x_{2},\ldots,x_{a\ ???}} x1,x2,,xnx_{1},x_{2},\ldots,x_{n}, ε\varepsilon μ<|λ|\mu<\left|\lambda\right|,,{}^{\text{,}} δ\delta x(x0δ,x0+δ),αi(αi+δ,)i=1,2,,n1x\in\left(x_{0}-\delta,x_{0}+\delta\right),\alpha_{i}^{\prime}\in\left(\alpha_{i}+\delta,\right)i=1,2,\ldots,n-1

|V(f0,f1,,fn1x,α1,α2,,αn1)|>μ\displaystyle\left|V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}\right|>\mu
|f(x0)||V(f0,f1,,fn1x0,α1,α2,,αn1)V(f0,f1,,fn1x,α1,α2,,αn1)|<με2\displaystyle\left|f\left(x_{0}\right)\right|\left|V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{0},\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}-V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}\right|<\frac{\mu\varepsilon}{2}
|V(f0,f1,,fn1x,x0,α1,α´2,,αi1αi+1,αi+2′′,,αn1)|<με2(n1)M,i=1,2,,n1.\displaystyle\left|V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,x_{0},\alpha_{1}^{\prime},\acute{\alpha}_{2},\ldots,\alpha_{i-1}^{\prime}\alpha_{i+1},\alpha_{i+2}^{\prime\prime},\ldots,\alpha_{n-1}^{\prime}}\right|<\frac{\mu\varepsilon}{2\left(n-1\right)M},i=1,2,\ldots,n-1.

x(x0δ,x0+δ)x\in\left(x_{0}-\delta,x_{0}+\delta\right) αi\alpha_{i}^{\prime} α1,α2,,αn1,x0,x\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime},x_{0},x

V(f0,f1,,fn1,fα1,α2,,αn1,x0,x)=0V\binom{f_{0},f_{1},\ldots,f_{n-1},f}{\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime},x_{0},x}=0

din care deducem

[f(x0)f(x)]V(f0,f1,,fn1x0,α1,α2,,αn1)=\displaystyle\left[f\left(x_{0}\right)-f\left(x\right)\right]V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{0},\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}=
=f(x0)[V(f0,f1,,fn1x0,α1,α2,,αn1)V(f0,f1,,fn1x,α1,α2,,αn1)]+\displaystyle=f\left(x_{0}\right)\left[V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{0},\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}-V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}\right]+
+i=1n1(1)if(αi)V(f0,f1,,fn1x,x0,α1,α2,,αi1,αi+1,αi+2,,αn1)\displaystyle+\sum_{i=1}^{n-1}\left(-1\right)^{i}f\left(\alpha_{i}^{\prime}\right)V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,x_{0},\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{i-1}^{\prime},\alpha_{i+1}^{\prime},\alpha_{i+2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}
|f(x0)f(x)|<1μμε2+(n1)Mμμε2(n1)M=ε\left|f\left(x_{0}\right)-f\left(x\right)\right|<\frac{1}{\mu}\cdot\frac{\mu\varepsilon}{2}+\frac{\left(n-1\right)M}{\mu}\cdot\frac{\mu\varepsilon}{2\left(n-1\right)M}=\varepsilon

|x0x|<δ\left|x_{0}-x\right|<\delta, f(x)f\left(x\right) x0x_{0}.

pe intervalul [a,b]\left[a,b\right], unde ci,i=0,1,,n1c_{i},i=0,1,\ldots,n-1

f(x)f\left(x\right) [a,b]\left[a,b\right]. f(x)f\left(x\right)

10. F(x,y)F\left(x,y\right) xx si yy f(x)g(x)f\left(x\right)g\left(x\right), xx

yy.

F(x,y)=i=1mfi(x)gi(y).F\left(x,y\right)=\sum_{i=1}^{m}f_{i}\left(x\right)g_{i}\left(y\right).

Daca F(x,y)F\left(x,y\right)

1+jFxiyfi,j=0,1,,m=0\left\|\frac{\partial^{1+j}F}{\partial x^{i}\partial y^{f}}\right\|_{i^{\prime},j=0,1,\ldots,m}=0

F(x,y)F\left(x,y\right).

11. F(x,y)F\left(x,y\right) pe o multime EE de puncte (x,y)\left(x,y\right) ca xx

ExE_{x} si EyE_{y}).

Vom zice ca mm grad m1>mm_{1}>m.

f1(x),f2(x),,jf_{1}\left(x\right),f_{2}\left(x\right),\ldots,j

ExE_{x}

g1(y),g2(y),,g(y)g_{1}\left(y\right),g_{2}\left(y\right),\ldots,g\left(y\right)

EyE_{y}.

functii numai xx numai de yy. efectiv 0.

este de gradul efectiv mm, r<mr<m.

gasi un numar rr mm rr functii φ1(x),φ2(x),,φr\varphi_{1}\left(x\right),\varphi_{2}\left(x\right),\ldots,\varphi_{r}

fi(x)=ci,1φ1(x)+xi,2φ2(x)++ci,rφr(x),i=1,2,,mf_{i}\left(x\right)=c_{i,1}\varphi_{1}\left(x\right)+x_{i,2}\varphi_{2}\left(x\right)+\cdots+c_{i,r}\varphi_{r}\left(x\right),\ \ i=1,2,\ldots,m

unde ci,jc_{i,j}

F(x,y)=i=1rφi(x)ψi(y)F\left(x,y\right)=\sum_{i=1}^{r}\varphi_{i}\left(x\right)\psi_{i}\left(y\right)

unde

ψi(y)=c1,ig1(y)++cm,igm(y),i=1,2,,r.\psi_{i}\left(y\right)=c_{1,i}g_{1}\left(y\right)+\cdots+c_{m,i}g_{m}\left(y\right),\ i=1,2,\ldots,r.

12

D(x1,x2,,xm+1;Fy1,y2,,ym+1)=F(xi,yi)i,j=1,2,,m+1D\left(\begin{array}[c]{cc}x_{1},x_{2},\ldots,x_{m+1}&\\ &;F\\ y_{1},y_{2},\ldots,y_{m+1}&\end{array}\right)=\left\|F\left(x_{i},y_{i}\right)\right\|_{i,j=1,2,\ldots,m+1}

unde x1,x2,,xm+1x_{1},x_{2},\ldots,x_{m+1} sunt m+1m+1 ExE_{x} iar y1,y2,,ym+1m+1y_{1},y_{2},\ldots,y_{m+1}m+1 EyE_{y}.

D(x1,x2,,xm+1y1,y2,,ym+1;F)=0D\left(\begin{tabular}[c]{l}$x_{1},x_{2},\ldots,x_{m+1}$\\ \\ $y_{1},y_{2},\ldots,y_{m+1}$\end{tabular};F\right)=0

pe EE.

Orice functie F(x,y)F\left(x,y\right) EE mm.

functia F(x,y)F\left(x,y\right) r,1rm,rr,1\leq r\leq m,r puncte x1,x2,,xExx_{1},x_{2},\ldots,x\in E_{x} si r\ r puncte y1,y2,,yrEyy_{1},y_{2},\ldots,y_{r}\in E_{y}

D=D(x1,x2,,xr;Fy1,y2,,yr)0D=D\left(\begin{array}[c]{cc}x_{1},x_{2},\ldots,x_{r}&\\ &;F\\ y_{1},y_{2},\ldots,y_{r}&\end{array}\right)\neq 0

si

D(x1,x2,,xr,xy1,y2,,yr,y;F)=0D\left(\begin{array}[c]{c}x_{1},x_{2},\ldots,x_{r},x\\ \\ y_{1},y_{2},\ldots,y_{r},y\end{array};F\right)=0

oricare ar fi (x,y)E\left(x,y\right)\in E. F(x,y)F\left(x,y\right)

Daca rr efectiv rr. Ai,jA_{i,j} DD.

F(x,y)=i=1rfi(x)gi(y)F\left(x,y\right)=\sum_{i=1}^{r}f_{i}\left(x\right)g_{i}\left(y\right)

unde, de exemplu

fi(x)=F(x,yi),gi(y)=1Ds=1r(1)s+riF(xs,y)As,i,i=1,2,,rf_{i}\left(x\right)=F\left(x,y_{i}\right),g_{i}\left(y\right)=\frac{1}{D}\sum_{s=1}^{r}\left(-1\right)^{s+r-i}F\left(x_{s},y\right)A_{s,i},\ i=1,2,\ldots,r

fi(x)f_{i}\left(x\right) gi(y)g_{i}\left(y\right)

Daca ExE_{x} m+1m+1 EyE_{y} m+1m+1 orice functie F(x,y)F\left(x,y\right) EE mm.

13. Un cuasi-polinom mm mi<mm_{i}<m.

mm m1m-1.

D(x1,x2,,xmy1,y2,,ymj???;F)=V(f1,f2,,fmx1,x2,,xm)V(g1,g2,,gmy1,y2,,ym).D\left(\begin{array}[c]{c}x_{1},x_{2},\ldots,x_{m}\\ \\ y_{1},y_{2},\ldots,y_{mj???}\end{array};F\right)=V\binom{f_{1},f_{2},\ldots,f_{m}}{x_{1},x_{2},\ldots,x_{m}}V\binom{g_{1},g_{2},\ldots,g_{m}}{y_{1},y_{2},\ldots,y_{m}}.

punctele xix_{i} yiy_{i}

Conditia efectiv mm ExE_{x} EyE_{y}.

14. EE R(axb,cyd)R\left(a\leq x\leq b,c\leq y\leq d\right).

Putem considera functii F(x,y)F\left(x,y\right)

D(x1,x2,,xmy1,y2,,yn;F)0D\left(\begin{tabular}[c]{l}$x_{1},x_{2},\ldots,x_{m}$\\ \\ $y_{1},y_{2},\ldots,y_{n}$\end{tabular};F\right)\neq 0

x1,x2,,xm[a,b]x_{1},x_{2},\ldots,x_{m}\in\left[a,b\right] y1,y2,,y[c,d]y_{1},y_{2},\ldots,y\in\left[c,d\right]

F(x,y)F\left(x,y\right) cu xx yy x1<x2<<xm,y1<y2<<ymx_{1}<x_{2}<\ldots<x_{m},y_{1}<y_{2}<\ldots<y_{m},

observam ca pentru y1,i=1,2,,my_{1},i=1,2,\ldots,m si pentru xi,i=1,2,,mx_{i},i=1,2,\ldots,m

D(x,x+h,x+2h,,x+mhy,y+k,y+2k,,y+mk;F)=0D\left(\begin{array}[c]{c}x,x+h,x+2h,\ldots,x+mh\\ \\ y,y+k,y+2k,\ldots,y+mk\end{array};F\right)=0

unde x,y,h,kx,y,h,k ca ax,x+mhb,cy,y+mkda\leq x,x+mh\leq b,c\leq y,y+mk\leq d si mm

Daca functia F(x,y)F\left(x,y\right) x,yx,y pe RR mm.

yy si kk,

D(x1,x2,,xm+1y,y+k,,y+mk;F)=0D\left(\begin{tabular}[c]{l}$x_{1},x_{2},\ldots,x_{m+1}$\\ \\ $y,y+k,\ldots,y+mk$\end{tabular};F\right)=0

oricare ar fi xi[a,b],i=1,2,,m+1x_{i}\in\left[a,b\right],i=1,2,\ldots,m+1.

punem fi(x)=F(x,y+ik),i=1,2,,m,f(x)=F(x,y)f_{i}\left(x\right)=F\left(x,y+ik\right),\ i=1,2,\ldots,m,\ f\left(x\right)=F\left(x,y\right). punctele x1,x2,,xm+1x_{1},x_{2},\ldots,x_{m+1} si punem fi(y)=F(xi,y),i=1,2,,m,f(y)=F(x,y)f_{i}\left(y\right)=F\left(x_{i},y\right),\ i=1,2,\ldots,m,f\left(y\right)=F\left(x,y\right),

D(x1,x2,,xm+1y1,y2,,ym+1;F)=0D\left(\begin{array}[c]{c}x_{1},x_{2},\ldots,x_{m+1}\\ \\ y_{1},y_{2},\ldots,y_{m+1}\end{array};F\right)=0

oricare ar fi xi[a,b],yi[c,d],i=1,2,,m+1x_{i}\in\left[a,b\right],y_{i}\in\left[c,d\right],i=1,2,\ldots,m+1.

15. simetrica de xx si yy.

fi(x)=ai,1g1(x)+ai,2g2(x)++ai,mgm(x),i=1,2,,mf_{i}\left(x\right)=a_{i,1}g_{1}\left(x\right)+a_{i,2}g_{2}\left(x\right)+\cdots+a_{i,m}g_{m}\left(x\right),\ i=1,2,\ldots,m

unde ai,ja_{i,j} ai,j=aj,ia_{i,j}=a_{j,i}.

multime liniara ee (deci ca Ex=Ey=eE_{x}=E_{y}=e) mm

(cu aij=aj,ia\,ij=a\,j,i)

independente pe ee. mm x1,x2,,xmex_{1},x_{2},\ldots,x_{m}\in e

V=V(g1,g1,,gmx1,x2,,xm)0.V^{\ast}=V\binom{g_{1},g_{1},\ldots,g_{m}}{x_{1},x_{2},\ldots,x_{m}}\neq 0.

permite sa scriem

i=1mfi(x)gi(xk)=i=12mfi(xk)gi(x),k=1,2,,m\sum_{i=1}^{m}f_{i}\left(x\right)g_{i}\left(x_{k}\right)=\sum_{i=12}^{m}f_{i}\left(x_{k}\right)g_{i}\left(x\right),\ k=1,2,\ldots,m

fi(x)f_{i}\left(x\right) aratam ca ai,j=aj,ia_{i,j}=a_{j,i}.

ij1,2,,m(ai,jaj,i)[gi(x)gi(y)gi(x)gj(y)]=0.\sum_{i\neq j}^{1,2,\ldots,m}\left(a_{i,j}-a_{j,i}\right)\left[g_{i}\left(x\right)g_{i}\left(y\right)-g_{i}\left(x\right)g_{j}\left(y\right)\right]=0.

Dind lui xx si yy xxx_{x} si xlx_{l} (m2)\binom{m}{2} (m2)\binom{m}{2} ai,jaj,ia_{i,j}-a_{j,i}.

al determinantului VV^{\ast}. este o putere a lui VV^{\ast} ( Vm+1V^{\ast m+1})..\

Rezulta ca ai,jaj,i=0,i,j=1,2,,ma_{i,j}-a_{j,i}=0,\ i,j=1,2,\ldots,m,

coeficientilor ai,ja_{i,j} 0. efectiv mm, cu determinantul ai,j\left\|a_{i,j}\right\| de 0.

grad efectiv r<mr<m sume de rr numai de xx yy.

de doua variabile x,yx,y, φ1(x),φ2(x),,φr(x),φ1(y),φ2(y),,φr(y)\varphi_{1}\left(x\right),\varphi_{2}\left(x\right),\ldots,\varphi_{r}\left(x\right),\varphi_{1}\left(y\right),\varphi_{2}\left(y\right),\ldots,\varphi_{r}\left(y\right), unde rr φi(x)\varphi_{i}\left(x\right)

References

  • [1] L.J. Magnus, ”Über die Relaitonen der Functionen welche der Gleichung F1yφ1x+F2yφ2x++Fnyφnx=F1xφ1y+F2xφ2y++FnxφnyF_{1}y\varphi_{1}x+F_{2}y\varphi_{2}x+\cdots+F_{n}y\varphi_{n}x=F_{1}x\varphi_{1}y+F_{2}x\varphi_{2}y+\cdots+F_{n}x\varphi_{n}y genugthung”,Journalf.die Reine u,angew.Math.,5, 365-373(1830).
  • [2] Tiberiu Popoviciu, ”Sur les soltions bornées et les solutions mesurables de certaines, équations fonctionnelles”, Mathematica, 14, 47-106 (1938).
  • [3] C. Stephanos, ”Sur une catégorie d’équations fonctionnelles” Rendic. Cric. Mat. Palermo, 18, 360-363 (1904).
1955

Related Posts