Fixed Point Results and the Ekeland Variational Principle in Vector B-Metric Spaces

Abstract

In this paper, we extend the concept of b-metric spaces to the vectorial case, where the distance is vector valued, and the constant in the triangle in equality axiom is replaced by a matrix. For such spaces, we establish results analogous to those in the b-metric setting: fixed-point theorems, stability results, and a variant of Ekeland’s variational principle. As a consequence, we also derive a variant of Caristi’s fixed-point theorem.

Authors

Radu Precup
Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babes-Bolyai, University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

Andrei Stan
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

tiangle inequality axiom; b-metric space; variational principle; fixed point

Paper coordinates

R. Precup, A. Stan, Fixed Point Results and the Ekeland Variational Principle in Vector B-Metric Spaces, Axioms, https://doi.org/10.3390/axioms14040250

About this paper

Print ISSN
Online ISSN

google scholar link

[1] Wilson, W. A. On Quasi-Metric Spaces. Amer. J. Math. 1931, 675–684.
[2] Bourbaki, N. Topologie Generale; Herman: Paris, France, 1974.
[3] Bakhtin, I.A. Contracting mapping principle in an almost metric space. Funktsionalnyi Analiz 1989, 30, 26–37.
[4] Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
[5] Coifman, R.R.; de Guzman, M. Singular integrals and multipliers on homogeneous spaces. Rev. Un. Mat. Argentina 1970/71, 25, 137–143.
[6] Hyers, D.H. A note on linear topological spaces. Bull. Amer. Math. Soc. 1938, 44, 76–80.
[7] Bourgin, D.G. Linear topological spaces. Amer. J. Math. 1943, 65, 637–659.
[8] Berinde, V.; P˘acurar, M. The early developments in fixed point theory on b-metric spaces: A brief survey and some important related aspects. Carpathian J. Math. 2022, 38, 523–538.
[9] An, T.V.; Van Dung, N.; Kadelburg, Z.; Radenovi´c, S. Various generalizations of metric spaces and fixed point theorems. RACSAM 2015, 109(1), 175–198. Generalized distances and their associate metrics: Impact on fixed point theory. Creat. Math. Inform. 2013, 22(1), 23–32.
[10] Mitrovi´c, Z.D. Fixed point results in b-metric spaces. Fixed Point Theory 2019, 20, 559–566, https://doi.org/10.24193/fpt-ro.2019.2.36.
[11] Boriceanu, M.; Petru¸sel, A.; Rus, I.A. Fixed point theorems for some multivalued generalized contractions in b-metric spaces. Int. J. Math. Stat. 2010, 6, 65–76.
[12] Aydi, H.; Czerwik, S. Modern Discrete Mathematics and Analysis. Springer: Cham, Switzerland, 2018.
[13] Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces. Springer: Cham, Switzerland, 2014.
[14] Reich, S.; Zaslavski, A.J. Well-posedness of fixed point problems. Far East J. Math. Sci. 2001, Special Volume (Functional Analysis and its Applications), Part III, 393–401.
[15] Berinde, V. Generalized contractions in quasimetric spaces. Seminar on Fixed Point Theory, Preprint no. 3, 1993, 3–9.
[16] Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163.
[17] Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256.
[18] Bota, M.-F.; Micula, S. Ulam–Hyers stability via fixed point results for special contractions in b-metric spaces. Symmetry 2022, 14, 2461.
[19] Petrus, el, A.; Petrus, el, G. Graphical contractions and common fixed points in b-metric spaces. Arab. J. Math. 2023, 12, 423–430. https://doi.org/10.1007/s40065-022-00396-8.
[20] Bota, M.; Molnar, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28.
[21] Farkas, C; Molnár, A.; Nagy, S. A generalized variational principle in b-metric spaces. Le Matematiche 2014, 69(2), 205–221.
[22] Boriceanu, M. Fixed point theory on spaces with vector-valued b-metrics. Demonstr. Math. 2009, 42, 831–841.
[23] Precup, R. The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 2009, 49(3), 703–708.
[24] Berman, A.; Plemmons, R.J. Nonnegative matrices in the mathematical sciences. Academic Press: New York, USA, 1997.
[25] Collatz, L. Aufgaben monotoner Art. Arch. Math. (Basel) 1952, 3, 366–376.
[26] Cobzas, S,.; Czerwik, S. The completion of generalized b-metric spaces and fixed points. Fixed Point Theory 2020, 21(1), 133–150.
[27] Perov, A.I. On the Cauchy problem for a system of ordinary differential equations (Russian). Priblizhen. Metody Reshen. Differ. Uravn. 1964, 2, 115–134.
[28] Perov, A.I. Generalized principle of contraction mappings (Russian). Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2005, 1, 196–207.
[29] Ortega, J.M.; Rheinboldt, W.C. Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press: New York, USA, 1970.
[30] Avramescu, C. Asupra unei teoreme de punct fix. St. Cerc. Mat. 1970, 22, 215–221.
[31] Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47(2), 324–353.
[32] Mawhin, J.; Willem, M. Critical Point Theory And Hamiltonian Systems. Applied Mathematical Sciences: Springer, New York, USA, 1989.
[33] De Figueiredo, D.G. Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research: Bombay, India, 1989.
[34] Meghea, I. Ekeland Variational Principle with Generalizations and Variants. Old City Publishing: Philadelphia, USA, 2009.
[35] Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 1976, 215, 241–251.

Paper (preprint) in HTML form

Fixed point results and the Ekeland variational principle in vector B𝐵Bitalic_B-metric spaces

Radu Precup Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania r.precup@ictp.acad.ro  and  Andrei Stan Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania andrei.stan@ubbcluj.ro
Abstract.

In this paper, we extend the concept of b𝑏bitalic_b-metric spaces to the vectorial case, where the distance is vector-valued, and the constant in the triangle inequality axiom is replaced by a matrix. For such spaces, we establish results analogous to those in the b𝑏bitalic_b-metric setting: fixed-point theorems, stability results, and a variant of Ekeland’s variational principle. As a consequence, we also derive a variant of Caristi’s fixed-point theorem.

Key words and phrases:
triangle inequality axiom, b𝑏bitalic_b-metric space, variational principle, fixed point
2010 Mathematics Subject Classification:
47J35, 34K35, 47H10

1. Introduction

The concept of a b𝑏bitalic_b-metric space arises as a natural generalization of a metric space, where the triangle inequality axiom is relaxed by introducing a constant b1𝑏1b\geq 1italic_b ≥ 1 on its right-hand side. Early ideas in this direction can be traced back to the notion of ”quasimetric” spaces, as discussed in [1]. However, the formal definition and terminology of b𝑏bitalic_b-metric spaces are widely attributed to Bakhtin [2] and Czerwik [3]. Notably, one of the earliest works to introduce a mapping satisfying the properties of a b𝑏bitalic_b-metric dates back to 1970 in [4], where such a mapping was referred to as a ”distance”. A concept related to that of a b𝑏bitalic_b-metric is the notion of a quasi-norm, which can be traced back to Hyers [5] and Bourgin [6], who originally used the term ”quasi-norm.” For a survey on b𝑏bitalic_b-metric spaces we send the reader to [7, 8].

Various results from the classical theory of metric spaces have been extended to b𝑏bitalic_b-metric spaces, including fixed-point theorems (see, e.g., [9, 10, 11, 13, 12, 14]), estimations (see, e.g.,[15, 16]), stability results (see, e.g, [17, 18]), and variational principles (see, e.g., [19, 20]). In [21], the metric was allowed to take vector values, and results analogous to those for b𝑏bitalic_b-metric spaces were established, with matrices converging to zero replacing the contraction constants, but not the constant b𝑏bitalic_b from the triangle inequality axiom.

In this paper, we introduce the concept of a vector B𝐵Bitalic_B-metric space, where the scalar constant b𝑏bitalic_b in the triangle inequality is replaced by a matrix B𝐵Bitalic_B. This generalization introduces new challenges in establishing results analogous to those for classical b𝑏bitalic_b-metric spaces. To the best of our knowledge, this concept, along with the corresponding results presented here, is novel. Notably, some of the results appear to be new even in the scalar particular case where the matrix B𝐵Bitalic_B is reduced to a constant.

Throughout this paper, we consider nsuperscript𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT-valued vector metrics (n1𝑛1n\geq 1italic_n ≥ 1) on a set X𝑋Xitalic_X, i.e., mappings d:X×X+n:𝑑𝑋𝑋superscriptsubscript𝑛d:X\times X\to\mathbb{R}_{+}^{n}italic_d : italic_X × italic_X → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. In the scalar case (n=1𝑛1n=1italic_n = 1), we use the special notation ρ𝜌\rhoitalic_ρ to denote a standard metric or a b𝑏bitalic_b-metric.

The classical definition of a b𝑏bitalic_b-metric reads as follows:

Definition 1.1.

Let X𝑋Xitalic_X be a set and let b1𝑏1b\geq 1italic_b ≥ 1 be a given real number. A mapping ρ:X×X+:𝜌𝑋𝑋subscript\rho:X\times X\to\mathbb{R}_{+}italic_ρ : italic_X × italic_X → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is said to be a b-metric if for all x,y,zX𝑥𝑦𝑧𝑋x,y,z\in Xitalic_x , italic_y , italic_z ∈ italic_X the following conditions are satisfied: ρ(x,y)0𝜌𝑥𝑦0\rho(x,y)\geq 0italic_ρ ( italic_x , italic_y ) ≥ 0, ρ(x,y)=0𝜌𝑥𝑦0\rho(x,y)=0italic_ρ ( italic_x , italic_y ) = 0 if and only if x=y𝑥𝑦x=yitalic_x = italic_y, ρ(x,y)=ρ(y,x)𝜌𝑥𝑦𝜌𝑦𝑥\rho(x,y)=\rho(y,x)italic_ρ ( italic_x , italic_y ) = italic_ρ ( italic_y , italic_x ) and ρ(x,z)b(ρ(x,y)+ρ(y,z))𝜌𝑥𝑧𝑏𝜌𝑥𝑦𝜌𝑦𝑧\rho(x,z)\leq b\left(\rho(x,y)+\rho(y,z)\right)italic_ρ ( italic_x , italic_z ) ≤ italic_b ( italic_ρ ( italic_x , italic_y ) + italic_ρ ( italic_y , italic_z ) ). The pair (X,ρ)𝑋𝜌(X,\rho)( italic_X , italic_ρ ) is called a b𝑏bitalic_b-metric space.

In case the mapping ρ𝜌\rhoitalic_ρ is allowed to be vector-valued and one replaces the constant b𝑏bitalic_b by a matrix B𝐵Bitalic_B, we obtain our definition of a vector B𝐵Bitalic_B-metric space.

Definition 1.2.

Let X𝑋Xitalic_X be a set, n1𝑛1n\geq 1italic_n ≥ 1 and let Bn×n()𝐵subscript𝑛𝑛B\in\mathcal{M}_{n\times n}(\mathbb{R})italic_B ∈ caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R ) be an arbitrary matrix. A mapping d=(d1,d2,,dn):X×X+n:𝑑subscript𝑑1subscript𝑑2subscript𝑑𝑛𝑋𝑋subscriptsuperscript𝑛d=(d_{1},d_{2},\ldots,d_{n})\colon X\times X\to\mathbb{R}^{n}_{+}italic_d = ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) : italic_X × italic_X → blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is called a vector B𝐵Bitalic_B-metric if for all u,v,wX,𝑢𝑣𝑤𝑋u,v,w\in X,italic_u , italic_v , italic_w ∈ italic_X , one has

  1. (positivity): d(u,v)0𝑑𝑢𝑣0d(u,v)\geq 0italic_d ( italic_u , italic_v ) ≥ 0 and d(u,v)=0𝑑𝑢𝑣0d(u,v)=0italic_d ( italic_u , italic_v ) = 0 if and only if u=v𝑢𝑣u=vitalic_u = italic_v;

  2. (symmetry): d(u,v)=d(v,u)𝑑𝑢𝑣𝑑𝑣𝑢d(u,v)=d(v,u)italic_d ( italic_u , italic_v ) = italic_d ( italic_v , italic_u );

  3. (triangle inequality): d(u,w)B(d(u,v)+d(v,w))𝑑𝑢𝑤𝐵𝑑𝑢𝑣𝑑𝑣𝑤d(u,w)\leq B\left(d(u,v)+d(v,w)\right)italic_d ( italic_u , italic_w ) ≤ italic_B ( italic_d ( italic_u , italic_v ) + italic_d ( italic_v , italic_w ) ).

The pair (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) is called a vector B𝐵Bitalic_B-metric space.

2. Preliminaries

In this paper, the vectors in nsuperscript𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT are looked as column matrices and ordering between them and, more generally, between matrices of the same size is understood by components. Likewise, the convergence of a sequence of vectors or matrices is understood componentwise.

The spaces of square matrices of size n𝑛nitalic_n with real number entries and nonnegative entries are denoted by n×n()subscript𝑛𝑛\mathcal{M}_{n\times n}\left(\mathbb{R}\right)caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R ) and n×n(+),subscript𝑛𝑛subscript\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right),caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) , respectively. An element of n×n(+)subscript𝑛𝑛subscript\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right)caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) is refereed as a positive matrix, while a matrix Mn×n()𝑀subscript𝑛𝑛M\in\mathcal{M}_{n\times n}\left(\mathbb{R}\right)italic_M ∈ caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R ) is called inverse-positive if it is invertible and its inverse M1superscript𝑀1M^{-1}italic_M start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is positive.

A positive matrix M𝑀Mitalic_M is said to be convergent to zero if its power Mksuperscript𝑀𝑘M^{k}italic_M start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT tends to the zero matrix 0nsubscript0𝑛0_{n}0 start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT as k.𝑘k\rightarrow\infty.italic_k → ∞ .

One has the following characterizations of matrices which are convergent to zero (see, e.g., [22, 23]).

Proposition 2.1.

Let Mn×n(+)𝑀subscript𝑛𝑛subscriptM\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right)italic_M ∈ caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) and let I𝐼Iitalic_I be the identity matrix of size n.𝑛n.italic_n . The following statements are equivalent:

(a):

M𝑀Mitalic_M is convergent to zero.

(b):

The spectral radius r(M)𝑟𝑀r\left(M\right)italic_r ( italic_M ) of matrix M𝑀Mitalic_M is less than 1,11,1 , i.e., r(M)<1.𝑟𝑀1r\left(M\right)<1.italic_r ( italic_M ) < 1 .

(c):

IM𝐼𝑀I-Mitalic_I - italic_M is invertible and (IM)1=I+M+M2+.superscript𝐼𝑀1𝐼𝑀superscript𝑀2\left(I-M\right)^{-1}=I+M+M^{2}+\ ....( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_I + italic_M + italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … .

(d):

IM𝐼𝑀I-Mitalic_I - italic_M is inverse-positive.

The following proposition collects the various properties equivalent to the notion of an inverse-positive matrix (see, e.g., [23, 24]).

Proposition 2.2.

Let Mn×n().𝑀subscript𝑛𝑛M\in\mathcal{M}_{n\times n}\left(\mathbb{R}\right).italic_M ∈ caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R ) . The following statements are equivalent:

(a):

M𝑀Mitalic_M is inverse-positive.

(b):

M𝑀Mitalic_M is monotone, i.e., Mx0𝑀𝑥0Mx\geq 0italic_M italic_x ≥ 0 (xn)𝑥superscript𝑛\left(x\in\mathbb{R}^{n}\right)( italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) implies x0.𝑥0x\geq 0.italic_x ≥ 0 .

(c):

There exists a positive matrix M¯¯𝑀\overline{M}over¯ start_ARG italic_M end_ARG and a real number s>r(M¯)𝑠𝑟¯𝑀s>r\left(\overline{M}\right)italic_s > italic_r ( over¯ start_ARG italic_M end_ARG ) such that the following representation holds: M=sIM¯.𝑀𝑠𝐼¯𝑀M=sI-\overline{M}.italic_M = italic_s italic_I - over¯ start_ARG italic_M end_ARG .

Clearly, if M𝑀Mitalic_M is inverse-positive, from the representation M=sIM¯,𝑀𝑠𝐼¯𝑀M=sI-\overline{M},italic_M = italic_s italic_I - over¯ start_ARG italic_M end_ARG , we immediately see that all its entries except those from the diagonal are 0;absent0\leq 0;≤ 0 ; also the matrix 1sM¯1𝑠¯𝑀\frac{1}{s}\overline{M}divide start_ARG 1 end_ARG start_ARG italic_s end_ARG over¯ start_ARG italic_M end_ARG is convergent to zero. If a matrix M𝑀Mitalic_M is both positive and inverse-positive, using the representation M=sIM¯𝑀𝑠𝐼¯𝑀M=sI-\overline{M}italic_M = italic_s italic_I - over¯ start_ARG italic_M end_ARG we deduce that M𝑀Mitalic_M must be a diagonal matrix with strictly positive diagonal entries.

A mapping N:XX:𝑁𝑋𝑋N:X\rightarrow Xitalic_N : italic_X → italic_X defined on a vector B𝐵Bitalic_B-metric space (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) is said to be a Perov contraction mapping if there exists a matrix A𝐴Aitalic_A convergent to zero such that

(2.1) d(N(x),N(y))Ad(x,y)𝑑𝑁𝑥𝑁𝑦𝐴𝑑𝑥𝑦d\left(N\left(x\right),N\left(y\right)\right)\leq Ad\left(x,y\right)italic_d ( italic_N ( italic_x ) , italic_N ( italic_y ) ) ≤ italic_A italic_d ( italic_x , italic_y )

for all x,yX.𝑥𝑦𝑋x,y\in X.italic_x , italic_y ∈ italic_X .

The next proposition is about the relationship between vector B𝐵Bitalic_B-metrics and both vector and scalar b𝑏bitalic_b-metrics.

Proposition 2.3.

(10) Any vector-valued b𝑏bitalic_b-metric d𝑑ditalic_d can be identified with a vector Bbsubscript𝐵𝑏B_{b}italic_B start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT-metric, where Bbsubscript𝐵𝑏B_{b}italic_B start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT is the diagonal matrix whose diagonal entries are all equal to b.𝑏b.italic_b .

(20) If d𝑑ditalic_d is a vector B𝐵Bitalic_B-metric with an inverse-positive matrix B,𝐵B,italic_B , then d𝑑ditalic_d is also a vector B¯¯𝐵\underline{B}under¯ start_ARG italic_B end_ARG-metric with respect to the diagonal matrix B¯¯𝐵\underline{B}under¯ start_ARG italic_B end_ARG that preserves the diagonal of B,𝐵B,italic_B , as well as a vector-valued b~~𝑏\tilde{b}over~ start_ARG italic_b end_ARG-metric with b~=max{bii: 1in}.~𝑏:subscript𝑏𝑖𝑖1𝑖𝑛\tilde{b}=\max\left\{b_{ii}:\ 1\leq i\leq n\right\}.over~ start_ARG italic_b end_ARG = roman_max { italic_b start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT : 1 ≤ italic_i ≤ italic_n } . Here B=(bij)1i,jn.𝐵subscriptsubscript𝑏𝑖𝑗formulae-sequence1𝑖𝑗𝑛B=\left(b_{ij}\right)_{1\leq i,j\leq n}.italic_B = ( italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_i , italic_j ≤ italic_n end_POSTSUBSCRIPT .

(30) If d𝑑ditalic_d is a vector B𝐵Bitalic_B-metric with a positive matrix B,𝐵B,italic_B , then to each norm in nsuperscript𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT one can associate a scalar b𝑏bitalic_b-metric, for example:

ρ1(x,y)subscript𝜌1𝑥𝑦\displaystyle\rho_{1}(x,y)italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) :=i=1ndi(x,y),assignabsentsuperscriptsubscript𝑖1𝑛subscript𝑑𝑖𝑥𝑦\displaystyle:=\sum\limits_{i=1}^{n}d_{i}(x,y),:= ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_y ) , is a b1-metric,is a subscript𝑏1-metric,\displaystyle\text{is a }b_{1}\text{-metric,}is a italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT -metric, b1:=i=1nmax1jnbij,assignsubscript𝑏1superscriptsubscript𝑖1𝑛subscript1𝑗𝑛subscript𝑏𝑖𝑗\displaystyle\quad b_{1}:=\sum\limits_{i=1}^{n}\max_{1\leq j\leq n}b_{ij},italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT := ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT roman_max start_POSTSUBSCRIPT 1 ≤ italic_j ≤ italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ,
ρ(x,y)subscript𝜌𝑥𝑦\displaystyle\rho_{\infty}(x,y)italic_ρ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_x , italic_y ) :=max1indi(x,y),assignabsentsubscript1𝑖𝑛subscript𝑑𝑖𝑥𝑦\displaystyle:=\max_{1\leq i\leq n}d_{i}(x,y),:= roman_max start_POSTSUBSCRIPT 1 ≤ italic_i ≤ italic_n end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_y ) , is a b-metric,is a subscript𝑏-metric,\displaystyle\text{is a }b_{\infty}\text{-metric,}is a italic_b start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT -metric, b:=max1inj=1nbij,assignsubscript𝑏subscript1𝑖𝑛superscriptsubscript𝑗1𝑛subscript𝑏𝑖𝑗\displaystyle\quad b_{\infty}:=\max_{1\leq i\leq n}\sum\limits_{j=1}^{n}b_{ij},italic_b start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT := roman_max start_POSTSUBSCRIPT 1 ≤ italic_i ≤ italic_n end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ,
ρ2(x,y)subscript𝜌2𝑥𝑦\displaystyle\rho_{2}(x,y)italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) :=(i=1ndi(x,y)2)12,assignabsentsuperscriptsuperscriptsubscript𝑖1𝑛subscript𝑑𝑖superscript𝑥𝑦212\displaystyle:=\left(\sum\limits_{i=1}^{n}d_{i}(x,y)^{2}\right)^{\frac{1}{2}},:= ( ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT , is a b2-metric,is a subscript𝑏2-metric,\displaystyle\text{is a }b_{2}\text{-metric,}is a italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -metric, b2:=(i,j=1nbij2)12.assignsubscript𝑏2superscriptsuperscriptsubscript𝑖𝑗1𝑛superscriptsubscript𝑏𝑖𝑗212\displaystyle\quad b_{2}:=\left(\sum\limits_{i,j=1}^{n}b_{ij}^{2}\right)^{% \frac{1}{2}}.italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT := ( ∑ start_POSTSUBSCRIPT italic_i , italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT .

Thus, to any vector B𝐵Bitalic_B-metric, one can associate different (scalar) b𝑏bitalic_b-metrics, depending on the chosen metric on n.superscript𝑛\mathbb{R}^{n}.blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . However, as shown in [22], working in a vector setting with matrices instead of numbers is more accurate especially when a connection with other matrices is necessary. It will also be the case of this work where some conditions or conclusions will connect the matrix B𝐵Bitalic_B with the matrix A𝐴Aitalic_A involved in (2.1).

If Y𝑌Yitalic_Y is a nonempty subset of a vector B𝐵Bitalic_B-metric space (X,d),𝑋𝑑\left(X,d\right),( italic_X , italic_d ) , we define the diameter of the set Y𝑌Yitalic_Y by

diamd(Y):=sup{ρ1(x,y):x,yY}=sup{i=1ndi(x,y):x,yY}.assignsubscriptdiam𝑑𝑌supremumconditional-setsubscript𝜌1𝑥𝑦𝑥𝑦𝑌supremumconditional-setsuperscriptsubscript𝑖1𝑛subscript𝑑𝑖𝑥𝑦𝑥𝑦𝑌\mathrm{diam}_{d}(Y):=\sup\{\rho_{1}\left(x,y\right)\,:\ x,y\in Y\}=\sup\left% \{\sum\limits_{i=1}^{n}d_{i}\left(x,y\right)\,:\ x,y\in Y\ \right\}.roman_diam start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_Y ) := roman_sup { italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) : italic_x , italic_y ∈ italic_Y } = roman_sup { ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_y ) : italic_x , italic_y ∈ italic_Y } .

From this definition, it follows immediately that if diamd(Y)=a,subscriptdiam𝑑𝑌𝑎\ \mathrm{diam}_{d}\left(Y\right)=a,roman_diam start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_Y ) = italic_a , then d(x,y)ae𝑑𝑥𝑦𝑎𝑒d\left(x,y\right)\leq aeitalic_d ( italic_x , italic_y ) ≤ italic_a italic_e   for all x,yY,𝑥𝑦𝑌x,y\in Y,italic_x , italic_y ∈ italic_Y , where e=(1,1,,1)n𝑒111superscript𝑛e=(1,1,\ldots,1)\in\mathbb{R}^{n}italic_e = ( 1 , 1 , … , 1 ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Conversely, if d(x,y)ae𝑑𝑥𝑦𝑎𝑒d\left(x,y\right)\leq aeitalic_d ( italic_x , italic_y ) ≤ italic_a italic_e for all x,yY,𝑥𝑦𝑌x,y\in Y,italic_x , italic_y ∈ italic_Y , then diamd(Y)na.subscriptdiam𝑑𝑌𝑛𝑎\mathrm{diam}_{d}(Y)\leq na.roman_diam start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_Y ) ≤ italic_n italic_a .

Although a b𝑏bitalic_b-metric does not generate a topology (see, e.g., [25]), several topological properties can still be defined in terms of sequences (e.g., closed sets, continuous operators, or lower semicontinuous functionals).

We conclude this section by two examples of vector B𝐵Bitalic_B-metrics.

Example 2.4.

Let d:2×2+2:𝑑superscript2superscript2superscriptsubscript2\ d\colon\mathbb{R}^{2}\times\mathbb{R}^{2}\rightarrow\mathbb{R}_{+}^{2}italic_d : blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT  be given by

d(x,y)=(|x1y1|2+|x2y2||x2y2|,),𝑑𝑥𝑦matrixsuperscriptsubscript𝑥1subscript𝑦12subscript𝑥2subscript𝑦2subscript𝑥2subscript𝑦2d(x,y)=\begin{pmatrix}|x_{1}-y_{1}|^{2}+|x_{2}-y_{2}|\\ |x_{2}-y_{2}|,\end{pmatrix},italic_d ( italic_x , italic_y ) = ( start_ARG start_ROW start_CELL | italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | end_CELL end_ROW start_ROW start_CELL | italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | , end_CELL end_ROW end_ARG ) ,

for x=(x1,x2),y=(y1,y2)2.formulae-sequence𝑥subscript𝑥1subscript𝑥2𝑦subscript𝑦1subscript𝑦2superscript2x=(x_{1},x_{2}),\ y=(y_{1},y_{2})\in\mathbb{R}^{2}.italic_x = ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , italic_y = ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ∈ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . Then, (2,d)superscript2𝑑\left(\mathbb{R}^{2},d\right)( blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_d ) is a vector B𝐵Bitalic_B-metric space, where

B=(2101).𝐵matrix2101B=\begin{pmatrix}2&-1\\ 0&1\end{pmatrix}.italic_B = ( start_ARG start_ROW start_CELL 2 end_CELL start_CELL - 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARG ) .

Here, the matrix B𝐵Bitalic_B is inverse-positive, but not positive.

Example 2.5.

We present an example of a vector-valued mapping d𝑑ditalic_d which is a vector B𝐵Bitalic_B-metric with respect to a positive matrix, but for which no inverse-positive matrix exists such that d𝑑ditalic_d remains a vector B𝐵Bitalic_B-metric. Let

S={(t,t):t}2,𝑆conditional-set𝑡𝑡𝑡superscript2S=\left\{(t,t)\,:\ \,t\in\mathbb{R}\right\}\subset\mathbb{R}^{2},italic_S = { ( italic_t , italic_t ) : italic_t ∈ blackboard_R } ⊂ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

and let d:2×2+2:𝑑superscript2superscript2superscriptsubscript2\ d\colon\mathbb{R}^{2}\times\mathbb{R}^{2}\rightarrow\mathbb{R}_{+}^{2}italic_d : blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT  be given by

d(x,y)={(0,0)if x=y,(|xy|2,|xy|)if x,yS,(|xy|,|xy|2)otherwise,𝑑𝑥𝑦cases00if 𝑥𝑦superscript𝑥𝑦2𝑥𝑦if 𝑥𝑦𝑆𝑥𝑦superscript𝑥𝑦2otherwised(x,y)=\begin{cases}(0,0)&\text{if }x=y,\\ \left(|x-y|^{2},|x-y|\right)&\text{if }x,y\in S,\\ \left(|x-y|,|x-y|^{2}\right)&\text{otherwise},\end{cases}italic_d ( italic_x , italic_y ) = { start_ROW start_CELL ( 0 , 0 ) end_CELL start_CELL if italic_x = italic_y , end_CELL end_ROW start_ROW start_CELL ( | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , | italic_x - italic_y | ) end_CELL start_CELL if italic_x , italic_y ∈ italic_S , end_CELL end_ROW start_ROW start_CELL ( | italic_x - italic_y | , | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL start_CELL otherwise , end_CELL end_ROW

where |z|=|(z1,z2)|=|z1|+|z2|𝑧subscript𝑧1subscript𝑧2subscript𝑧1subscript𝑧2\left|z\right|=|(z_{1},z_{2})|=|z_{1}|+|z_{2}|| italic_z | = | ( italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) | = | italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | + | italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | is a norm on 2superscript2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Note that d𝑑ditalic_d is a vector B0subscript𝐵0B_{0}italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-metric, where

B0=(2211).subscript𝐵0matrix2211B_{0}=\begin{pmatrix}2&2\\ 1&1\end{pmatrix}.italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( start_ARG start_ROW start_CELL 2 end_CELL start_CELL 2 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARG ) .

Let us show that B0subscript𝐵0B_{0}italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the smallest matrix for which the triangle inequality holds for d𝑑ditalic_d. To this aim, let B=(bij)1i,jn𝐵subscriptsubscript𝑏𝑖𝑗formulae-sequence1𝑖𝑗𝑛B=(b_{ij})_{1\leq i,j\leq n}italic_B = ( italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_i , italic_j ≤ italic_n end_POSTSUBSCRIPT be any matrix for which the triangle inequality is satisfied. Then, for x,yS𝑥𝑦𝑆x,y\in Sitalic_x , italic_y ∈ italic_S and zS𝑧𝑆z\notin Sitalic_z ∉ italic_S, we have

(2.2) (|xy|2|xy|)(b11(|xz|+|zy|)+b12(|xz|2+|zy|2)b21(|xz|+|zy|)+b22(|xz|2+|zy|2)).matrixsuperscript𝑥𝑦2𝑥𝑦matrixsubscript𝑏11𝑥𝑧𝑧𝑦subscript𝑏12superscript𝑥𝑧2superscript𝑧𝑦2subscript𝑏21𝑥𝑧𝑧𝑦subscript𝑏22superscript𝑥𝑧2superscript𝑧𝑦2\begin{pmatrix}|x-y|^{2}\\ |x-y|\end{pmatrix}\leq\begin{pmatrix}b_{11}\left(|x-z|+|z-y|\right)+b_{12}% \left(|x-z|^{2}+|z-y|^{2}\right)\\ b_{21}\left(|x-z|+|z-y|\right)+b_{22}\left(|x-z|^{2}+|z-y|^{2}\right)\end{% pmatrix}.( start_ARG start_ROW start_CELL | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL | italic_x - italic_y | end_CELL end_ROW end_ARG ) ≤ ( start_ARG start_ROW start_CELL italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( | italic_x - italic_z | + | italic_z - italic_y | ) + italic_b start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( | italic_x - italic_z | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_z - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT ( | italic_x - italic_z | + | italic_z - italic_y | ) + italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT ( | italic_x - italic_z | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_z - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL end_ROW end_ARG ) .

Let t,α{0}𝑡𝛼0t,\alpha\in\mathbb{R}\setminus\left\{0\right\}italic_t , italic_α ∈ blackboard_R ∖ { 0 }, and set x=(t,t)S,𝑥𝑡𝑡𝑆x=(t,t)\in S,italic_x = ( italic_t , italic_t ) ∈ italic_S , y=(0,0)S𝑦00𝑆y=(0,0)\in Sitalic_y = ( 0 , 0 ) ∈ italic_S and z=(α,0)S𝑧𝛼0𝑆z=(\alpha,0)\notin Sitalic_z = ( italic_α , 0 ) ∉ italic_S. The first inequality in (2.2) yields,

4t2b11(|tα|+|t|+|α|)+b12((|tα|+|t|)2+α2).4superscript𝑡2subscript𝑏11𝑡𝛼𝑡𝛼subscript𝑏12superscript𝑡𝛼𝑡2superscript𝛼24t^{2}\leq b_{11}\left(|t-\alpha|+|t|+\left|\alpha\right|\right)+b_{12}\left((% |t-\alpha|+|t|)^{2}+\alpha^{2}\right).4 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≤ italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( | italic_t - italic_α | + | italic_t | + | italic_α | ) + italic_b start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( ( | italic_t - italic_α | + | italic_t | ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .

Clearly, taking α=t𝛼𝑡\alpha=titalic_α = italic_t and the limit as t𝑡t\rightarrow\inftyitalic_t → ∞, this inequality holds only if b122subscript𝑏122b_{12}\geq 2italic_b start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ≥ 2. Similarly, from the second inequality, we obtain

2|t|b21(|tα|+|t|+|α|)+b22((|tα|+|t|)2+α2).2𝑡subscript𝑏21𝑡𝛼𝑡𝛼subscript𝑏22superscript𝑡𝛼𝑡2superscript𝛼22\left|t\right|\leq b_{21}\left(|t-\alpha|+|t|+\left|\alpha\right|\right)+b_{2% 2}\left((|t-\alpha|+|t|)^{2}+\alpha^{2}\right).2 | italic_t | ≤ italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT ( | italic_t - italic_α | + | italic_t | + | italic_α | ) + italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT ( ( | italic_t - italic_α | + | italic_t | ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .

Setting α=t2𝛼𝑡2\alpha=\frac{t}{2}italic_α = divide start_ARG italic_t end_ARG start_ARG 2 end_ARG, we find that

2|t|2b21|t|+5b22t22,or equivalently,5b22t22+2|t|(b211)0.formulae-sequence2𝑡2subscript𝑏21𝑡5subscript𝑏22superscript𝑡22or equivalently,5subscript𝑏22superscript𝑡222𝑡subscript𝑏21102\left|t\right|\leq 2b_{21}\left|t\right|+5b_{22}\frac{t^{2}}{2},\quad\text{or% equivalently,}\quad 5b_{22}\frac{t^{2}}{2}+2\left|t\right|(b_{21}-1)\geq 0.2 | italic_t | ≤ 2 italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT | italic_t | + 5 italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG , or equivalently, 5 italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + 2 | italic_t | ( italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT - 1 ) ≥ 0 .

Clearly, this inequality required for all t𝑡titalic_t implies b211subscript𝑏211b_{21}\geq 1italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT ≥ 1. To determine the values of b11subscript𝑏11b_{11}italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT and b22subscript𝑏22b_{22}italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT, we apply the triangle inequality with x,y,zS(xyzx)𝑥𝑦𝑧𝑆𝑥𝑦𝑧𝑥x,y,z\in S\ \,(x\neq y\neq z\neq x)italic_x , italic_y , italic_z ∈ italic_S ( italic_x ≠ italic_y ≠ italic_z ≠ italic_x ), which gives

(|xy|2|xy|)(b11(|xz|2+|zy|2)+b12(|xz|+|zy|)b21(|xz|2+|zy|2)+b22(|xz|+|zy|)).matrixsuperscript𝑥𝑦2𝑥𝑦matrixsubscript𝑏11superscript𝑥𝑧2superscript𝑧𝑦2subscript𝑏12𝑥𝑧𝑧𝑦subscript𝑏21superscript𝑥𝑧2superscript𝑧𝑦2subscript𝑏22𝑥𝑧𝑧𝑦\begin{pmatrix}|x-y|^{2}\\ |x-y|\end{pmatrix}\leq\begin{pmatrix}b_{11}\left(|x-z|^{2}+|z-y|^{2}\right)+b_% {12}\left(|x-z|+|z-y|\right)\\ b_{21}\left(|x-z|^{2}+|z-y|^{2}\right)+b_{22}\left(|x-z|+|z-y|\right)\end{% pmatrix}.( start_ARG start_ROW start_CELL | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL | italic_x - italic_y | end_CELL end_ROW end_ARG ) ≤ ( start_ARG start_ROW start_CELL italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( | italic_x - italic_z | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_z - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_b start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( | italic_x - italic_z | + | italic_z - italic_y | ) end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT ( | italic_x - italic_z | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_z - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT ( | italic_x - italic_z | + | italic_z - italic_y | ) end_CELL end_ROW end_ARG ) .

Similar arguments as above imply that b112subscript𝑏112b_{11}\geq 2italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ≥ 2 and b221.subscript𝑏221b_{22}\geq 1.italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT ≥ 1 . Thus, BB0𝐵subscript𝐵0B\geq B_{0}italic_B ≥ italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as claimed.

3. Fixed point theorems in vector B𝐵Bitalic_B-metric spaces

In this section we establish some fixed point results in vector B𝐵Bitalic_B-metric spaces, analogous to the well-known classical results.

3.1. Perov type fixed point theorem

Our first result is a version of Perov’s fixed point theorem (see, [26, 27]) for such spaces.

Theorem 3.1.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐵Bitalic_B-metric space, where B𝐵Bitalic_B is either a positive or an inverse-positive matrix, and let N:XX:𝑁𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X → italic_X be an operator. Assume that there exists a convergent to zero matrix An×n(+)𝐴subscript𝑛𝑛subscriptA\in\mathcal{M}_{n\times n}(\mathbb{R}_{+})italic_A ∈ caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) such that

(3.1) d(N(x),N(y))Ad(x,y),for all x,yX,formulae-sequence𝑑𝑁𝑥𝑁𝑦𝐴𝑑𝑥𝑦for all 𝑥𝑦𝑋d(N(x),N(y))\leq Ad(x,y),\quad\text{for all }x,y\in X,italic_d ( italic_N ( italic_x ) , italic_N ( italic_y ) ) ≤ italic_A italic_d ( italic_x , italic_y ) , for all italic_x , italic_y ∈ italic_X ,

i.e., N𝑁Nitalic_N is a Perov contraction mapping. Then, N𝑁Nitalic_N has a unique fixed point.

Proof.

Let x0Xsubscript𝑥0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X, and recursively define

xk=N(xk1),for k1.formulae-sequencesubscript𝑥𝑘𝑁subscript𝑥𝑘1for 𝑘1x_{k}=N(x_{k-1}),\ \ \ \text{for\ \ }k\geq 1.italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_N ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) , for italic_k ≥ 1 .

Since the matrix A𝐴Aitalic_A is convergent to zero, for each α>0𝛼0\alpha>0italic_α > 0, there exists k0=k0(α)subscript𝑘0subscript𝑘0𝛼k_{0}=k_{0}\left(\alpha\right)italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_α ) such that

Ak0Λ,superscript𝐴subscript𝑘0ΛA^{k_{0}}\leq\Lambda,italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≤ roman_Λ ,

where ΛΛ\Lambdaroman_Λ is the square matrix of size n𝑛nitalic_n whose entries are all equal to α.𝛼\alpha.italic_α . Let k,p0𝑘𝑝0k,p\geq 0italic_k , italic_p ≥ 0 and k0subscript𝑘0k_{0}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT be such that Ak0Λsuperscript𝐴subscript𝑘0ΛA^{k_{0}}\leq\Lambdaitalic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≤ roman_Λ, for some α>0𝛼0\alpha>0italic_α > 0 to be specified later.

Case (a): B𝐵Bitalic_B is inverse-positive. The triangle inequality yields

B2d(xk,xp)superscript𝐵2𝑑subscript𝑥𝑘subscript𝑥𝑝\displaystyle B^{-2}d(x_{k},x_{p})italic_B start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) B1d(xk,xk+k0)+B1d(xp,xk+k0)absentsuperscript𝐵1𝑑subscript𝑥𝑘subscript𝑥𝑘subscript𝑘0superscript𝐵1𝑑subscript𝑥𝑝subscript𝑥𝑘subscript𝑘0\displaystyle\leq B^{-1}d(x_{k},x_{k+k_{0}})+B^{-1}d(x_{p},x_{k+k_{0}})≤ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
B1Akd(x0,xk0)+d(xp,xp+k0)+d(xp+k0,xk+k0)absentsuperscript𝐵1superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0𝑑subscript𝑥𝑝subscript𝑥𝑝subscript𝑘0𝑑subscript𝑥𝑝subscript𝑘0subscript𝑥𝑘subscript𝑘0\displaystyle\leq B^{-1}A^{k}d(x_{0},x_{k_{0}})+d(x_{p},x_{p+k_{0}})+d(x_{p+k_% {0}},x_{k+k_{0}})≤ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_d ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_d ( italic_x start_POSTSUBSCRIPT italic_p + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
B1Akd(x0,xk0)+Apd(x0,xk0)+Ak0d(xk,xp)absentsuperscript𝐵1superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐴𝑝𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐴subscript𝑘0𝑑subscript𝑥𝑘subscript𝑥𝑝\displaystyle\leq B^{-1}A^{k}d(x_{0},x_{k_{0}})+A^{p}d(x_{0},x_{k_{0}})+A^{k_{% 0}}d(x_{k},x_{p})≤ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT )
B1Akd(x0,xk0)+Apd(x0,xk0)+Λd(xk,xp),absentsuperscript𝐵1superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐴𝑝𝑑subscript𝑥0subscript𝑥subscript𝑘0Λ𝑑subscript𝑥𝑘subscript𝑥𝑝\displaystyle\leq B^{-1}A^{k}d(x_{0},x_{k_{0}})+A^{p}d(x_{0},x_{k_{0}})+% \Lambda d(x_{k},x_{p}),≤ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + roman_Λ italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ,

which gives

(3.2) (B2Λ)d(xk,xp)B1Akd(x0,xk0)+Apd(x0,xk0).superscript𝐵2Λ𝑑subscript𝑥𝑘subscript𝑥𝑝superscript𝐵1superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐴𝑝𝑑subscript𝑥0subscript𝑥subscript𝑘0(B^{-2}-\Lambda)d(x_{k},x_{p})\leq B^{-1}A^{k}d(x_{0},x_{k_{0}})+A^{p}d(x_{0},% x_{k_{0}}).( italic_B start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT - roman_Λ ) italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≤ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .

Given that the right-hand side of (3.2) is a vector that converges to zero as k,p𝑘𝑝k,p\rightarrow\inftyitalic_k , italic_p → ∞, our goal is to show that a linear combination of the components of the vector d(xk,xp)𝑑subscript𝑥𝑘subscript𝑥𝑝d(x_{k},x_{p})italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) is bounded above by the corresponding components of the right-hand side of (3.2). To this aim, we make the following notations

B2=(γij)1i,jn,superscript𝐵2subscriptsubscript𝛾𝑖𝑗formulae-sequence1𝑖𝑗𝑛\displaystyle B^{-2}=(\gamma_{ij})_{1\leq i,j\leq n},\,\ italic_B start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT = ( italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_i , italic_j ≤ italic_n end_POSTSUBSCRIPT ,
B1Akd(x0,xk0)+Apd(x0,xk0)=φk,p=(φk,pi)1in.superscript𝐵1superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐴𝑝𝑑subscript𝑥0subscript𝑥subscript𝑘0subscript𝜑𝑘𝑝subscriptsuperscriptsubscript𝜑𝑘𝑝𝑖1𝑖𝑛\displaystyle B^{-1}A^{k}d(x_{0},x_{k_{0}})+A^{p}d(x_{0},x_{k_{0}})=\varphi_{k% ,p}=(\varphi_{k,p}^{i})_{1\leq i\leq n}.italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = italic_φ start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT = ( italic_φ start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_i ≤ italic_n end_POSTSUBSCRIPT .

Hence

(3.3) i=1nφk,pi0as k,p.formulae-sequencesuperscriptsubscript𝑖1𝑛superscriptsubscript𝜑𝑘𝑝𝑖0as 𝑘𝑝\sum_{i=1}^{n}\varphi_{k,p}^{i}\rightarrow 0\ \ \ \text{as\ \ }k,p\rightarrow\infty.∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_φ start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT → 0 as italic_k , italic_p → ∞ .

Under these notations, relation (3.2) gives

(3.4) j=1n(γijα)dj(xk,xp)φk,pi,i=1,2,,n.formulae-sequencesuperscriptsubscript𝑗1𝑛subscript𝛾𝑖𝑗𝛼subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝superscriptsubscript𝜑𝑘𝑝𝑖𝑖12𝑛\sum_{j=1}^{n}(\gamma_{ij}-\alpha)d_{j}\left(x_{k},x_{p}\right)\leq\varphi_{k,% p}^{i}\,,\,\,i=1,2,\ldots,n.∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - italic_α ) italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≤ italic_φ start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT , italic_i = 1 , 2 , … , italic_n .

Summing in (3.4) over all i{1,2,,n}𝑖12𝑛i\in\left\{1,2,\ldots,n\right\}italic_i ∈ { 1 , 2 , … , italic_n }, we obtain

(3.5) i,j=1n(γijα)dj(xk,xp)i=1nφk,pi.superscriptsubscript𝑖𝑗1𝑛subscript𝛾𝑖𝑗𝛼subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝superscriptsubscript𝑖1𝑛superscriptsubscript𝜑𝑘𝑝𝑖\sum_{i,j=1}^{n}(\gamma_{ij}-\alpha)d_{j}(x_{k},x_{p})\leq\sum_{i=1}^{n}% \varphi_{k,p}^{i}.∑ start_POSTSUBSCRIPT italic_i , italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - italic_α ) italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≤ ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_φ start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT .

Since B2superscript𝐵2B^{-2}italic_B start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT is invertible and positive, the sum of its elements in each column must be positive, i.e.,

i=1nγij>0, j=1,2,,n.formulae-sequencesuperscriptsubscript𝑖1𝑛subscript𝛾𝑖𝑗0 𝑗12𝑛\sum_{i=1}^{n}\gamma_{ij}>0,\text{ \ \ }j=1,2,\ldots,n.∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT > 0 , italic_j = 1 , 2 , … , italic_n .

If we denote

γ=min{i=1nγij:j=1,2,,n},𝛾:superscriptsubscript𝑖1𝑛subscript𝛾𝑖𝑗𝑗12𝑛\gamma=\min\left\{\sum_{i=1}^{n}\gamma_{ij}\,:\ \,j=1,2,\ldots,n\right\},italic_γ = roman_min { ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT : italic_j = 1 , 2 , … , italic_n } ,

relation (3.5) implies that

i=1nφk,pisuperscriptsubscript𝑖1𝑛superscriptsubscript𝜑𝑘𝑝𝑖\displaystyle\sum_{i=1}^{n}\varphi_{k,p}^{i}∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_φ start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT \displaystyle\geq i,j=1nγijdj(xk,xp)nαj=1ndj(xk,xp)superscriptsubscript𝑖𝑗1𝑛subscript𝛾𝑖𝑗subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝𝑛𝛼superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝\displaystyle\sum_{i,j=1}^{n}\gamma_{ij}d_{j}(x_{k},x_{p})-n\alpha\sum_{j=1}^{% n}d_{j}(x_{k},x_{p})∑ start_POSTSUBSCRIPT italic_i , italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) - italic_n italic_α ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT )
=\displaystyle== j=1n(i=1nγij)dj(xk,xp)nαj=1ndj(xk,xp)superscriptsubscript𝑗1𝑛superscriptsubscript𝑖1𝑛subscript𝛾𝑖𝑗subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝𝑛𝛼superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝\displaystyle\sum_{j=1}^{n}\left(\sum_{i=1}^{n}\gamma_{ij}\right)d_{j}(x_{k},x% _{p})-n\alpha\sum_{j=1}^{n}d_{j}(x_{k},x_{p})∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) - italic_n italic_α ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT )
\displaystyle\geq (γnα)j=1ndj(xk,xp).𝛾𝑛𝛼superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝\displaystyle(\gamma-n\alpha)\sum_{j=1}^{n}d_{j}(x_{k},x_{p}).( italic_γ - italic_n italic_α ) ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) .

Choosing α<γ/n𝛼𝛾𝑛\alpha<\gamma/nitalic_α < italic_γ / italic_n, one has

(3.6) j=1ndj(xk,xp)1γnαi=1nφk,pi.superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝1𝛾𝑛𝛼superscriptsubscript𝑖1𝑛superscriptsubscript𝜑𝑘𝑝𝑖\sum_{j=1}^{n}d_{j}(x_{k},x_{p})\leq\frac{1}{\gamma-n\alpha}\sum_{i=1}^{n}% \varphi_{k,p}^{i}.∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≤ divide start_ARG 1 end_ARG start_ARG italic_γ - italic_n italic_α end_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_φ start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT .

In (3.6), we observe that the factor 1γnα1𝛾𝑛𝛼\frac{1}{\gamma-n\alpha}divide start_ARG 1 end_ARG start_ARG italic_γ - italic_n italic_α end_ARG depends only on n𝑛nitalic_n and B𝐵Bitalic_B, whence (3.3) yields

j=1ndj(xk,xp)0as k,p,formulae-sequencesuperscriptsubscript𝑗1𝑛subscript𝑑𝑗subscript𝑥𝑘subscript𝑥𝑝0as 𝑘𝑝\sum_{j=1}^{n}d_{j}(x_{k},x_{p})\rightarrow 0\ \ \ \text{as\ \ }k,p\rightarrow\infty,∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) → 0 as italic_k , italic_p → ∞ ,

so the sequence (xk)subscript𝑥𝑘\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is Cauchy.

Case (b): B𝐵Bitalic_B is positive. One has

d(xk,xp)𝑑subscript𝑥𝑘subscript𝑥𝑝\displaystyle d(x_{k},x_{p})italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) Bd(xk,xk+k0)+Bd(xp,xk+k0)absent𝐵𝑑subscript𝑥𝑘subscript𝑥𝑘subscript𝑘0𝐵𝑑subscript𝑥𝑝subscript𝑥𝑘subscript𝑘0\displaystyle\leq Bd(x_{k},x_{k+k_{0}})+Bd(x_{p},x_{k+k_{0}})≤ italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
BAkd(x0,xk0)+B2d(xp,xp+k0)+B2d(xp+k0,xk+k0)absent𝐵superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐵2𝑑subscript𝑥𝑝subscript𝑥𝑝subscript𝑘0superscript𝐵2𝑑subscript𝑥𝑝subscript𝑘0subscript𝑥𝑘subscript𝑘0\displaystyle\leq BA^{k}d(x_{0},x_{k_{0}})+B^{2}d(x_{p},x_{p+k_{0}})+B^{2}d(x_% {p+k_{0}},x_{k+k_{0}})≤ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_p + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
BAkd(x0,xk0)+B2Apd(x0,xk0)+B2Ak0d(xk,xp)absent𝐵superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐵2superscript𝐴𝑝𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐵2superscript𝐴subscript𝑘0𝑑subscript𝑥𝑘subscript𝑥𝑝\displaystyle\leq BA^{k}d(x_{0},x_{k_{0}})+B^{2}A^{p}d(x_{0},x_{k_{0}})+B^{2}A% ^{k_{0}}d(x_{k},x_{p})≤ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT )
BAkd(x0,xk0)+B2Apd(x0,xk0)+B2Λd(xk,xp),absent𝐵superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐵2superscript𝐴𝑝𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐵2Λ𝑑subscript𝑥𝑘subscript𝑥𝑝\displaystyle\leq BA^{k}d(x_{0},x_{k_{0}})+B^{2}A^{p}d(x_{0},x_{k_{0}})+B^{2}% \Lambda d(x_{k},x_{p}),≤ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Λ italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ,

which gives

(3.7) (IB2Λ)d(xk,xp)BAkd(x0,xk0)+B2Apd(x0,xk0).𝐼superscript𝐵2Λ𝑑subscript𝑥𝑘subscript𝑥𝑝𝐵superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐵2superscript𝐴𝑝𝑑subscript𝑥0subscript𝑥subscript𝑘0(I-B^{2}\Lambda)d(x_{k},x_{p})\leq BA^{k}d(x_{0},x_{k_{0}})+B^{2}A^{p}d(x_{0},% x_{k_{0}}).( italic_I - italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Λ ) italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≤ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .

Note that since Λk=(nα)k1ΛsuperscriptΛ𝑘superscript𝑛𝛼𝑘1Λ\Lambda^{k}=(n\alpha)^{k-1}\Lambdaroman_Λ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT = ( italic_n italic_α ) start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT roman_Λ, if α𝛼\alphaitalic_α is chosen to be smaller than one divided by the greatest element of B2superscript𝐵2B^{2}italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT multiplied with n𝑛nitalic_n, the matrix B2Λsuperscript𝐵2ΛB^{2}\Lambdaitalic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Λ is convergent to zero. Consequently, IB2Λ𝐼superscript𝐵2ΛI-B^{2}\Lambdaitalic_I - italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Λ is invertible and (IB2Λ)1n×n(+).superscript𝐼superscript𝐵2Λ1subscript𝑛𝑛subscript\left(I-B^{2}\Lambda\right)^{-1}\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}% \right).( italic_I - italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Λ ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∈ caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) . Hence, (3.7) is equivalent to

(3.8) d(xk,xp)(IB2Λ)1(BAkd(x0,xk0)+B2Apd(x0,xk0)).𝑑subscript𝑥𝑘subscript𝑥𝑝superscript𝐼superscript𝐵2Λ1𝐵superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥subscript𝑘0superscript𝐵2superscript𝐴𝑝𝑑subscript𝑥0subscript𝑥subscript𝑘0d(x_{k},x_{p})\leq\left(I-B^{2}\Lambda\right)^{-1}\left(BA^{k}d(x_{0},x_{k_{0}% })+B^{2}A^{p}d(x_{0},x_{k_{0}})\right).italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≤ ( italic_I - italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Λ ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ) .

As the right-hand side of (3.8) converges to zero when k,p,𝑘𝑝k,p\rightarrow\infty,italic_k , italic_p → ∞ , we conclude that (xk)subscript𝑥𝑘\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is Cauchy.

Therefore, in both cases, the sequence (xk)subscript𝑥𝑘\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is Cauchy and since X𝑋Xitalic_X is complete, it has a limit x,superscript𝑥x^{\ast},italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , that is, d(xk,x)0𝑑subscript𝑥𝑘superscript𝑥0d\left(x_{k},x^{\ast}\right)\rightarrow 0italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) → 0 as k.𝑘k\rightarrow\infty.italic_k → ∞ . Then, from

d(N(xk),N(x))Ad(xk,x),𝑑𝑁subscript𝑥𝑘𝑁superscript𝑥𝐴𝑑subscript𝑥𝑘superscript𝑥d\left(N\left(x_{k}\right),N\left(x^{\ast}\right)\right)\leq Ad\left(x_{k},x^{% \ast}\right),italic_d ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) ≤ italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ,

it follows that N(xk)N(x)𝑁subscript𝑥𝑘𝑁superscript𝑥N\left(x_{k}\right)\rightarrow N\left(x^{\ast}\right)italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) → italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) as k,𝑘k\rightarrow\infty,italic_k → ∞ , while from xk+1=N(xk),subscript𝑥𝑘1𝑁subscript𝑥𝑘x_{k+1}=N\left(x_{k}\right),italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , passing to the limit, one obtains x=N(x).superscript𝑥𝑁superscript𝑥x^{\ast}=N\left(x^{\ast}\right).italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) . Hence N𝑁Nitalic_N has a fixed point. To prove uniqueness, suppose that there exists another fixed point xsuperscript𝑥absentx^{\ast\ast}italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT. Then, from

d(x,x)=d(N(x),N(x))Ad(x,x),𝑑superscript𝑥superscript𝑥absent𝑑𝑁superscript𝑥𝑁superscript𝑥absent𝐴𝑑superscript𝑥superscript𝑥absentd\left(x^{\ast},x^{\ast\ast}\right)=d\left(N\left(x^{\ast}\right),N\left(x^{% \ast\ast}\right)\right)\leq Ad\left(x^{\ast},x^{\ast\ast}\right),italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) = italic_d ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_N ( italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) ) ≤ italic_A italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) ,

recursively, we obtain that

d(x,x)Akd(x,x),𝑑superscript𝑥superscript𝑥absentsuperscript𝐴𝑘𝑑superscript𝑥superscript𝑥absentd\left(x^{\ast},x^{\ast\ast}\right)\leq A^{k}d\left(x^{\ast},x^{\ast\ast}% \right),italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) ≤ italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) ,

for all k1.𝑘1k\geq 1.italic_k ≥ 1 . Since Ak0nsuperscript𝐴𝑘subscript0𝑛A^{k}\rightarrow 0_{n}italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT → 0 start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT as k,𝑘k\rightarrow\infty,italic_k → ∞ , we deduce that d(x,x)=0,𝑑superscript𝑥superscript𝑥absent0d\left(x^{\ast},x^{\ast\ast}\right)=0,italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) = 0 , i.e., x=x.superscript𝑥absentsuperscript𝑥x^{\ast\ast}=x^{\ast}.italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

If we are not interested in the uniqueness of the fixed point for N𝑁Nitalic_N, the condition (3.1) can be relaxed and replaced by a weaker assumption on the graph of N𝑁Nitalic_N.

Theorem 3.2.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐵Bitalic_B-metric space, where B𝐵Bitalic_B is either positive or inverse-positive, and let N:XX:𝑁𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X → italic_X be an operator. Assume there exists a convergent to zero matrix An×n(+)𝐴subscript𝑛𝑛subscriptA\in\mathcal{M}_{n\times n}(\mathbb{R}_{+})italic_A ∈ caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) such that

(3.9) d(N(x),N2(x))Ad(x,N(x)),for all xX.formulae-sequence𝑑𝑁𝑥superscript𝑁2𝑥𝐴𝑑𝑥𝑁𝑥for all 𝑥𝑋d\left(N(x),N^{2}(x)\right)\leq Ad(x,N(x)),\ \,\,\text{for all }x\in X.italic_d ( italic_N ( italic_x ) , italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) ) ≤ italic_A italic_d ( italic_x , italic_N ( italic_x ) ) , for all italic_x ∈ italic_X .

Then, N𝑁Nitalic_N has at least one fixed point.

Proof.

Following the proof of Theorem 3.1, from any initial point x0,subscript𝑥0x_{0},italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , the sequence xk=Nk(x0)subscript𝑥𝑘superscript𝑁𝑘subscript𝑥0x_{k}=N^{k}\left(x_{0}\right)italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_N start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is convergent to a fixed point xsuperscript𝑥x^{\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT of N,𝑁N,italic_N , which clearly depends on the starting point x0,subscript𝑥0x_{0},italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , but condition (3.9) is insufficient to guarantee the uniqueness. ∎

The next result is a version for vector B𝐵Bitalic_B-metric spaces of Maia’s fixed point theorem. The contraction condition on the operator is considered with respect to a vector B1subscript𝐵1B_{1}italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-metric d1,subscript𝑑1d_{1},italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , not necessarily complete, while the convergence of the sequence of successive approximations is guaranteed in a complete vector B2subscript𝐵2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-metric d2subscript𝑑2d_{2}italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT in a subordinate relationship to d1.subscript𝑑1d_{1}.italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT .

Theorem 3.3.

Let X𝑋Xitalic_X be a set equipped with two nsuperscript𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT-vector metrics, a B1subscript𝐵1B_{1}italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-metric d1subscript𝑑1d_{1}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and a B2subscript𝐵2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-metric d2subscript𝑑2d_{2}italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, where B2subscript𝐵2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is either positive or inverse-positive, and let N:XX:𝑁𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X → italic_X be an operator. Assume that the following conditions hold:

  1. (i)

    (X,d1)𝑋subscript𝑑1(X,d_{1})( italic_X , italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is a complete vector B1subscript𝐵1B_{1}italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-metric space;

  2. (ii)

    d1(x,y)Cd2(x,y)subscript𝑑1𝑥𝑦𝐶subscript𝑑2𝑥𝑦d_{1}(x,y)\leq Cd_{2}(x,y)italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) ≤ italic_C italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) for all x,yX𝑥𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X and some matrix Cn×n();𝐶subscript𝑛𝑛C\in\mathcal{M}_{n\times n}\left(\mathbb{R}\right);italic_C ∈ caligraphic_M start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT ( blackboard_R ) ;

  3. (iii)

    There exists a matrix A𝐴Aitalic_A convergent to zero such that

    (3.10) d2(N(x),N(y))Ad2(x,y), for all x,yX;formulae-sequencesubscript𝑑2𝑁𝑥𝑁𝑦𝐴subscript𝑑2𝑥𝑦 for all 𝑥𝑦𝑋d_{2}\left(N(x),N(y)\right)\leq Ad_{2}(x,y),\ \text{ for all }x,y\in X;italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_N ( italic_x ) , italic_N ( italic_y ) ) ≤ italic_A italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) , for all italic_x , italic_y ∈ italic_X ;
  4. (iv)

    The operator N𝑁Nitalic_N is continuous in (X,d1)𝑋subscript𝑑1\left(X,d_{1}\right)( italic_X , italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).

Then, the operator N𝑁Nitalic_N has a unique fixed point.

Proof.

Let x0Xsubscript𝑥0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X be fixed, and consider the iterative sequence xk+1=N(xk)subscript𝑥𝑘1𝑁subscript𝑥𝑘x_{k+1}=N(x_{k})italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for k0.𝑘0k\geq 0.italic_k ≥ 0 . For any k,k0,p0𝑘subscript𝑘0𝑝0k,k_{0},p\geq 0italic_k , italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_p ≥ 0, applying the triangle inequality twice and using condition (iii), we derive either

(B22Ak0)d2(xk,xp)B21Akd2(x0,xk0)+Apd2(x0,xk0),superscriptsubscript𝐵22superscript𝐴subscript𝑘0subscript𝑑2subscript𝑥𝑘subscript𝑥𝑝superscriptsubscript𝐵21superscript𝐴𝑘subscript𝑑2subscript𝑥0subscript𝑥subscript𝑘0superscript𝐴𝑝subscript𝑑2subscript𝑥0subscript𝑥subscript𝑘0(B_{2}^{-2}-A^{k_{0}})d_{2}(x_{k},x_{p})\leq B_{2}^{-1}A^{k}d_{2}(x_{0},x_{k_{% 0}})+A^{p}d_{2}(x_{0},x_{k_{0}}),( italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT - italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≤ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ,

in case that B2subscript𝐵2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is inverse-positive, or

(IB22Ak0)d2(xk,xp)B2Akd2(x0,xk0)+B22Apd2(x0,xk0),𝐼superscriptsubscript𝐵22superscript𝐴subscript𝑘0subscript𝑑2subscript𝑥𝑘subscript𝑥𝑝subscript𝐵2superscript𝐴𝑘subscript𝑑2subscript𝑥0subscript𝑥subscript𝑘0superscriptsubscript𝐵22superscript𝐴𝑝subscript𝑑2subscript𝑥0subscript𝑥subscript𝑘0(I-B_{2}^{2}A^{k_{0}})d_{2}(x_{k},x_{p})\leq B_{2}A^{k}d_{2}(x_{0},x_{k_{0}})+% B_{2}^{2}A^{p}d_{2}(x_{0},x_{k_{0}}),( italic_I - italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≤ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ,

if B2subscript𝐵2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is positive. Arguing similarly to the proof of Theorem 3.1, we deduce that (xk)subscript𝑥𝑘(x_{k})( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is a Cauchy sequence in (X,d2)𝑋subscript𝑑2(X,d_{2})( italic_X , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). From (ii), it follows immediately that (xk)subscript𝑥𝑘(x_{k})( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is also a Cauchy sequence in (X,d1)𝑋subscript𝑑1(X,d_{1})( italic_X , italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), hence (xk)subscript𝑥𝑘(x_{k})( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is convergent with respect the metric d1subscript𝑑1d_{1}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT to some x,superscript𝑥x^{\ast},italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , that is,

d1(N(xk),x)=d1(xk+1,x)0,as k,formulae-sequencesubscript𝑑1𝑁subscript𝑥𝑘superscript𝑥subscript𝑑1subscript𝑥𝑘1superscript𝑥0as 𝑘d_{1}(N(x_{k}),x^{\ast})=d_{1}\left(x_{k+1},x^{\ast}\right)\rightarrow 0,\ \ % \ \text{as }k\rightarrow\infty,italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) → 0 , as italic_k → ∞ ,

while the continuity of N𝑁Nitalic_N yields d1(N(x),x)=0subscript𝑑1𝑁superscript𝑥superscript𝑥0d_{1}(N(x^{\ast}),x^{\ast})=0italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = 0, i.e., N(x)=x𝑁superscript𝑥superscript𝑥N(x^{\ast})=x^{\ast}italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. To establish uniqueness, suppose that xsuperscript𝑥absentx^{\ast\ast}italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT is another fixed point of N,𝑁N,italic_N , i.e., N(x)=x𝑁superscript𝑥absentsuperscript𝑥absentN(x^{\ast\ast})=x^{\ast\ast}italic_N ( italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) = italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT. Then, by (3.10), one has

(IA)d2(x,x)0.𝐼𝐴subscript𝑑2superscript𝑥superscript𝑥absent0(I-A)d_{2}(x^{\ast},x^{\ast\ast})\leq 0.( italic_I - italic_A ) italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) ≤ 0 .

Since A𝐴Aitalic_A is convergent to zero, we necessarily have d2(x,x)=0subscript𝑑2superscript𝑥superscript𝑥absent0d_{2}(x^{\ast},x^{\ast\ast})=0italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT ) = 0, i.e., x=xsuperscript𝑥superscript𝑥absentx^{\ast}=x^{\ast\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT. ∎

3.2. Error estimates

The classical Banach and Perov fixed point theorems are accompanied by some error estimates in terms of the contraction constant and matrix, respectively. These estimates allow us to obtain stopping criteria for the iterative approximation process. It is the aim of this subsection to obtain such stopping criteria when working in vector B𝐵Bitalic_B-metric spaces.

Theorem 3.4.

Assume that all the conditions of Theorem 3.1 hold and let (xk)subscript𝑥𝑘\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) be a sequence of successive approximations of the fixed point x.superscript𝑥x^{\ast}.italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

(10):

If B𝐵Bitalic_B is inverse-positive, then

(3.11) (B1A)d(xk,x)Akd(x0,x1)(k0).superscript𝐵1𝐴𝑑subscript𝑥𝑘superscript𝑥superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥1𝑘0\left(B^{-1}-A\right)d\left(x_{k},x^{\ast}\right)\leq A^{k}d\left(x_{0},x_{1}% \right)\ \ \ \ \left(k\geq 0\right).( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_k ≥ 0 ) .

If in addition the matrix B1Asuperscript𝐵1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A is inverse-positive, then

(3.12) d(xk,x)(B1A)1Akd(x0,x1)(k0).𝑑subscript𝑥𝑘superscript𝑥superscriptsuperscript𝐵1𝐴1superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥1𝑘0d\left(x_{k},x^{\ast}\right)\leq\left(B^{-1}-A\right)^{-1}A^{k}d\left(x_{0},x_% {1}\right)\ \ \ \left(k\geq 0\right).italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ ( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_k ≥ 0 ) .
(20):

If B𝐵Bitalic_B is positive, then

(3.13) (IBA)d(xk,x)BAkd(x0,x1)(k0).𝐼𝐵𝐴𝑑subscript𝑥𝑘superscript𝑥𝐵superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥1𝑘0\left(I-BA\right)d\left(x_{k},x^{\ast}\right)\leq BA^{k}d\left(x_{0},x_{1}% \right)\ \ \ \ \left(k\geq 0\right).( italic_I - italic_B italic_A ) italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_k ≥ 0 ) .

If in addition IBA𝐼𝐵𝐴\ I-BAitalic_I - italic_B italic_A is inverse-positive, then

(3.14) d(xk,x)(IBA)1BAkd(x0,x1)(k0).𝑑subscript𝑥𝑘superscript𝑥superscript𝐼𝐵𝐴1𝐵superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥1𝑘0d\left(x_{k},x^{\ast}\right)\leq\left(I-BA\right)^{-1}BA^{k}d\left(x_{0},x_{1}% \right)\ \ \ \left(k\geq 0\right).italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ ( italic_I - italic_B italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_k ≥ 0 ) .
Proof.

(1)0{}^{0})start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT ): We have

B1d(xk,x)superscript𝐵1𝑑subscript𝑥𝑘superscript𝑥\displaystyle B^{-1}d\left(x_{k},x^{\ast}\right)italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) \displaystyle\leq d(xk,xk+1)+d(xk+1,x)𝑑subscript𝑥𝑘subscript𝑥𝑘1𝑑subscript𝑥𝑘1superscript𝑥\displaystyle d\left(x_{k},x_{k+1}\right)+d\left(x_{k+1},x^{\ast}\right)italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ) + italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT )
\displaystyle\leq Akd(x0,x1)+Ad(xk,x),superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥1𝐴𝑑subscript𝑥𝑘superscript𝑥\displaystyle A^{k}d\left(x_{0},x_{1}\right)+Ad\left(x_{k},x^{\ast}\right),italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ,

whence we deduce (3.11). The second part is obvious.

(20): We have

d(xk,x)𝑑subscript𝑥𝑘superscript𝑥\displaystyle d\left(x_{k},x^{\ast}\right)italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) \displaystyle\leq Bd(xk,xk+1)+Bd(xk+1,x)𝐵𝑑subscript𝑥𝑘subscript𝑥𝑘1𝐵𝑑subscript𝑥𝑘1superscript𝑥\displaystyle Bd\left(x_{k},x_{k+1}\right)+Bd\left(x_{k+1},x^{\ast}\right)italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ) + italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT )
\displaystyle\leq BAkd(x0,x1)+BAd(xk,x),𝐵superscript𝐴𝑘𝑑subscript𝑥0subscript𝑥1𝐵𝐴𝑑subscript𝑥𝑘superscript𝑥\displaystyle BA^{k}d\left(x_{0},x_{1}\right)+BAd\left(x_{k},x^{\ast}\right),italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + italic_B italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ,

that is (3.13). The additional conclusion is obvious. ∎

Remark 3.5.

Clearly, since Aksuperscript𝐴𝑘A^{k}italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT tends to the zero matrix as k,𝑘k\rightarrow\infty,italic_k → ∞ , formulas (3.12) and (3.14) provide stopping criteria for the iterative fixed point approximation algorithm starting from x0,subscript𝑥0x_{0},italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , when an admissible error is given. It should be emphasized that these estimates are in terms of matrices A𝐴Aitalic_A and B𝐵Bitalic_B. In contrast, if we make the transition to (scalar) b𝑏bitalic_b-metric spaces, as discussed in Section 2, the resulting estimates will depend on the chosen norm in nsuperscript𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and may vary across different norms. So, from this point of view, the vector approach not only unifies the results that can be obtained with the scalar method, but also provides the best estimates.

3.3. Stability results

We now present two stability properties of the Perov contraction mappings in vector B𝐵Bitalic_B-metric spaces.

The first property is in the sense of Reich and Zaslavski and generalizes the one obtained in [18] for b𝑏bitalic_b-metric spaces.

Theorem 3.6.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐵Bitalic_B-metric space, and let N:XX:𝑁𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X → italic_X be an operator such that (3.1) holds with a matrix A𝐴Aitalic_A convergent to zero. In addition assume that either

(a):

B𝐵Bitalic_B and B1Asuperscript𝐵1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A are inverse-positive;

or

(b):

B𝐵Bitalic_B is positive and IBA𝐼𝐵𝐴I-BAitalic_I - italic_B italic_A is inverse-positive.

Then, N𝑁Nitalic_N is stable in the sense of Reich and Zaslavski, i.e., N𝑁Nitalic_N has a unique fixed point xsuperscript𝑥x^{\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, and for every sequence (xk)Xsubscript𝑥𝑘𝑋(x_{k})\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⊂ italic_X satisfying

(3.15) d(xk,N(xk))0 as k,formulae-sequence𝑑subscript𝑥𝑘𝑁subscript𝑥𝑘0 as 𝑘d(x_{k},N(x_{k}))\rightarrow 0\text{ }\ \ \text{as\ \ }k\rightarrow\infty,italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) → 0 as italic_k → ∞ ,

one has

xkx as k.formulae-sequencesubscript𝑥𝑘superscript𝑥 as 𝑘x_{k}\rightarrow x^{\ast}\ \ \ \text{ as \ }k\rightarrow\infty.italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT as italic_k → ∞ .
Proof.

According to Theorem 3.1 the operator N𝑁Nitalic_N has a unique fixed point x.superscript𝑥x^{\ast}.italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT . In addition, for any sequence (xk)subscript𝑥𝑘\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) satisfying (3.15), in case (a), we have

B1d(xk,x)superscript𝐵1𝑑subscript𝑥𝑘superscript𝑥\displaystyle B^{-1}d(x_{k},x^{\ast})italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) d(xk,N(xk))+d(N(xk),x)absent𝑑subscript𝑥𝑘𝑁subscript𝑥𝑘𝑑𝑁subscript𝑥𝑘superscript𝑥\displaystyle\leq d(x_{k},N(x_{k}))+d(N(x_{k}),x^{\ast})≤ italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + italic_d ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT )
=d(xk,N(xk))+d(N(xk),N(x))absent𝑑subscript𝑥𝑘𝑁subscript𝑥𝑘𝑑𝑁subscript𝑥𝑘𝑁superscript𝑥\displaystyle=d(x_{k},N(x_{k}))+d(N(x_{k}),N(x^{\ast}))= italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + italic_d ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) )
d(xk,N(xk))+Ad(xk,x),absent𝑑subscript𝑥𝑘𝑁subscript𝑥𝑘𝐴𝑑subscript𝑥𝑘superscript𝑥\displaystyle\leq d(x_{k},N(x_{k}))+Ad(x_{k},x^{\ast}),≤ italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ,

that is,

d(xk,x)(B1A)1d(xk,N(xk)),𝑑subscript𝑥𝑘superscript𝑥superscriptsuperscript𝐵1𝐴1𝑑subscript𝑥𝑘𝑁subscript𝑥𝑘d(x_{k},x^{\ast})\leq(B^{-1}-A)^{-1}d(x_{k},N(x_{k})),italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ ( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) ,

while in case (b),

d(xk,x)(IBA)1Bd(xk,N(xk)).𝑑subscript𝑥𝑘superscript𝑥superscript𝐼𝐵𝐴1𝐵𝑑subscript𝑥𝑘𝑁subscript𝑥𝑘d(x_{k},x^{\ast})\leq\left(I-BA\right)^{-1}Bd(x_{k},N(x_{k})).italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ ( italic_I - italic_B italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) .

These estimates immediately yield the conclusion. ∎

The second stability result is in the sense of Ostrowski and extends to vector B𝐵Bitalic_B-metric spaces a similar property established in [18] for b𝑏bitalic_b-metric spaces.

Theorem 3.7.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐵Bitalic_B-metric space, and let N:XX:𝑁𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X → italic_X be an operator. Assume N𝑁Nitalic_N satisfies (3.1) with a matrix A𝐴Aitalic_A convergent to zero. In addition, assume that either

(a):

B𝐵Bitalic_B and Ib~A𝐼~𝑏𝐴I-\tilde{b}Aitalic_I - over~ start_ARG italic_b end_ARG italic_A are inverse-positive, where b~=max{bii:i=1,2,,n}~𝑏:subscript𝑏𝑖𝑖𝑖12𝑛\tilde{b}=\max\{b_{ii}\,:\,i=1,2,\ldots,n\}over~ start_ARG italic_b end_ARG = roman_max { italic_b start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT : italic_i = 1 , 2 , … , italic_n };

or

(b):

B𝐵Bitalic_B is positive and IBA𝐼𝐵𝐴I-BAitalic_I - italic_B italic_A is inverse-positive.

Then, N𝑁Nitalic_N has the Ostrowski property, i.e., N𝑁Nitalic_N has a unique fixed point xsuperscript𝑥x^{\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, and for every sequence (xk)Xsubscript𝑥𝑘𝑋(x_{k})\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⊂ italic_X satisfying

d(xk+1,N(xk))0 as k,𝑑subscript𝑥𝑘1𝑁subscript𝑥𝑘0 as 𝑘d(x_{k+1},N(x_{k}))\rightarrow 0\text{ \ as \ }k\rightarrow\infty,italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) → 0 as italic_k → ∞ ,

one has

xkx as k.formulae-sequencesubscript𝑥𝑘superscript𝑥 as 𝑘x_{k}\rightarrow x^{\ast}\ \ \ \text{ as \ }k\rightarrow\infty.italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT as italic_k → ∞ .
Proof.

As previously established, the operator N𝑁Nitalic_N has a unique fixed point xsuperscript𝑥x^{\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. In case (a), we have

d(xk+1,x)𝑑subscript𝑥𝑘1superscript𝑥\displaystyle d(x_{k+1},x^{\ast})italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) b~d(xk+1,N(xk))+b~d(N(xk),N(x))absent~𝑏𝑑subscript𝑥𝑘1𝑁subscript𝑥𝑘~𝑏𝑑𝑁subscript𝑥𝑘𝑁superscript𝑥\displaystyle\leq\tilde{b}\,d(x_{k+1},N(x_{k}))+\tilde{b}\,d(N(x_{k}),N(x^{% \ast}))≤ over~ start_ARG italic_b end_ARG italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + over~ start_ARG italic_b end_ARG italic_d ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) )
b~d(xk+1,N(xk))+b~Ad(xk,x)absent~𝑏𝑑subscript𝑥𝑘1𝑁subscript𝑥𝑘~𝑏𝐴𝑑subscript𝑥𝑘superscript𝑥\displaystyle\leq\tilde{b}\,d(x_{k+1},N(x_{k}))+\tilde{b}A\,d(x_{k},x^{\ast})≤ over~ start_ARG italic_b end_ARG italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + over~ start_ARG italic_b end_ARG italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT )
absent\displaystyle\leq\ \ldots≤ …
b~p=0k(b~A)pd(xk+1p,N(xkp))+(b~A)k+1d(x0,x),absent~𝑏superscriptsubscript𝑝0𝑘superscript~𝑏𝐴𝑝𝑑subscript𝑥𝑘1𝑝𝑁subscript𝑥𝑘𝑝superscript~𝑏𝐴𝑘1𝑑subscript𝑥0superscript𝑥\displaystyle\leq\tilde{b}\sum_{p=0}^{k}(\tilde{b}A)^{p}d(x_{k+1-p},N(x_{k-p})% )+(\tilde{b}A)^{k+1}d(x_{0},x^{\ast}),≤ over~ start_ARG italic_b end_ARG ∑ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( over~ start_ARG italic_b end_ARG italic_A ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 - italic_p end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k - italic_p end_POSTSUBSCRIPT ) ) + ( over~ start_ARG italic_b end_ARG italic_A ) start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ,

while in case (b), similar estimation gives

d(xk+1,x)p=0k(BA)pBd(xk+1p,N(xkp))+(BA)kBd(x0,x).𝑑subscript𝑥𝑘1superscript𝑥superscriptsubscript𝑝0𝑘superscript𝐵𝐴𝑝𝐵𝑑subscript𝑥𝑘1𝑝𝑁subscript𝑥𝑘𝑝superscript𝐵𝐴𝑘𝐵𝑑subscript𝑥0superscript𝑥d(x_{k+1},x^{\ast})\leq\sum_{p=0}^{k}(BA)^{p}Bd(x_{k+1-p},N(x_{k-p}))+(BA)^{k}% Bd(x_{0},x^{\ast}).italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ ∑ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_B italic_A ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 - italic_p end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k - italic_p end_POSTSUBSCRIPT ) ) + ( italic_B italic_A ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_B italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) .

Since Ib~A𝐼~𝑏𝐴I-\tilde{b}Aitalic_I - over~ start_ARG italic_b end_ARG italic_A is inverse-positive and b~A~𝑏𝐴\tilde{b}Aover~ start_ARG italic_b end_ARG italic_A is positive in the first case, and IBA𝐼𝐵𝐴I-BAitalic_I - italic_B italic_A is inverse-positive and BA𝐵𝐴BAitalic_B italic_A is positive in the second case, the series p=0k(b~A)psuperscriptsubscript𝑝0𝑘superscript~𝑏𝐴𝑝\sum_{p=0}^{k}(\tilde{b}A)^{p}∑ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( over~ start_ARG italic_b end_ARG italic_A ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT and p=0k(BA)psuperscriptsubscript𝑝0𝑘superscript𝐵𝐴𝑝\sum_{p=0}^{k}(BA)^{p}∑ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_B italic_A ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT are convergent. Moreover, (b~A)ksuperscript~𝑏𝐴𝑘(\tilde{b}A)^{k}( over~ start_ARG italic_b end_ARG italic_A ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT and (BA)ksuperscript𝐵𝐴𝑘(BA)^{k}( italic_B italic_A ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT converge to the zero matrix as k𝑘k\to\inftyitalic_k → ∞. Therefore, using the Cauchy-Toeplitz lemma (see [28]), it follows that d(xk+1,x)0𝑑subscript𝑥𝑘1superscript𝑥0d(x_{k+1},x^{\ast})\rightarrow 0italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) → 0 as k.𝑘k\rightarrow\infty.italic_k → ∞ .

3.4. Avramescu type fixed point theorem

Our next result is a variant of Avramescu’s fixed point theorem (see [29]) in vector B𝐵Bitalic_B-metric spaces.

Theorem 3.8 (Avramescu theorem in vector B𝐵Bitalic_B-metric spaces).

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐵Bitalic_B-metric space, D𝐷Ditalic_D a nonempty closed convex subset of a normed space Y,𝑌Y,italic_Y , N1:X×DX:subscript𝑁1𝑋𝐷𝑋N_{1}:X\times D\rightarrow Xitalic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_X × italic_D → italic_X and N2:X×DD:subscript𝑁2𝑋𝐷𝐷N_{2}:X\times D\rightarrow Ditalic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_X × italic_D → italic_D be two mappings. Assume that the following conditions are satisfied:

  1. (i)

    N1(x,.)N_{1}\left(x,.\right)italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , . ) is continuous for every xX𝑥𝑋x\in Xitalic_x ∈ italic_X and there is a matrix A𝐴Aitalic_A convergent to zero such that

    d(N1(x,y),N1(x¯,y))Ad(x,x¯),𝑑subscript𝑁1𝑥𝑦subscript𝑁1¯𝑥𝑦𝐴𝑑𝑥¯𝑥d(N_{1}(x,y),N_{1}(\overline{x},y))\leq A\,d(x,\overline{x}),italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( over¯ start_ARG italic_x end_ARG , italic_y ) ) ≤ italic_A italic_d ( italic_x , over¯ start_ARG italic_x end_ARG ) ,

    for all x,x¯X𝑥¯𝑥𝑋x,\overline{x}\in Xitalic_x , over¯ start_ARG italic_x end_ARG ∈ italic_X and yD;𝑦𝐷y\in D;italic_y ∈ italic_D ;

  2. (ii)

    Either

(a):

B𝐵Bitalic_B and B1Asuperscript𝐵1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A is inverse-positive;

or

(b):

B𝐵Bitalic_B is positive and IBA𝐼𝐵𝐴I-BAitalic_I - italic_B italic_A is inverse-positive.

  1. (iii)

    N2subscript𝑁2N_{2}italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is continuous and N2(X×D)subscript𝑁2𝑋𝐷N_{2}(X\times D)italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X × italic_D ) is a relatively compact subset of Y𝑌Yitalic_Y .

Then, there exists (x,y)X×Dsuperscript𝑥superscript𝑦𝑋𝐷(x^{\ast},y^{\ast})\in X\times D( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ∈ italic_X × italic_D such that

N1(x,y)=x,N2(x,y)=y.formulae-sequencesubscript𝑁1superscript𝑥superscript𝑦superscript𝑥subscript𝑁2superscript𝑥superscript𝑦superscript𝑦N_{1}(x^{\ast},y^{\ast})=x^{\ast},\quad N_{2}(x^{\ast},y^{\ast})=y^{\ast}.italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .
Proof.

For each yD𝑦𝐷y\in Ditalic_y ∈ italic_D, Theorem 3.1 applies to the operator N1(.,y)N_{1}\left(.,y\right)italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( . , italic_y ) and gives a unique S(y)X𝑆𝑦𝑋S(y)\in Xitalic_S ( italic_y ) ∈ italic_X such that

(3.16) N1(S(y),y)=S(y).subscript𝑁1𝑆𝑦𝑦𝑆𝑦N_{1}(S(y),y)=S(y).italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( italic_y ) , italic_y ) = italic_S ( italic_y ) .

We claim that the mapping S:DX:𝑆𝐷𝑋S:D\rightarrow Xitalic_S : italic_D → italic_X is continuous. To prove this, let y,y¯D𝑦¯𝑦𝐷y,\overline{y}\in Ditalic_y , over¯ start_ARG italic_y end_ARG ∈ italic_D. In case (a), we have

B1d(S(y),S(y¯))superscript𝐵1𝑑𝑆𝑦𝑆¯𝑦\displaystyle B^{-1}d(S(y),S(\overline{y}))italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_S ( italic_y ) , italic_S ( over¯ start_ARG italic_y end_ARG ) ) =B1d(N1(S(y),y),N1(S(y¯),y¯))absentsuperscript𝐵1𝑑subscript𝑁1𝑆𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\displaystyle=B^{-1}d\left(N_{1}\left(S(y),y\right),N_{1}\left(S(\overline{y})% ,\overline{y}\right)\right)= italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( italic_y ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , over¯ start_ARG italic_y end_ARG ) )
d(N1(S(y),y),N1(S(y¯),y))+d(N1(S(y¯),y),N1(S(y¯),y¯))absent𝑑subscript𝑁1𝑆𝑦𝑦subscript𝑁1𝑆¯𝑦𝑦𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\displaystyle\leq d\left(N_{1}\left(S(y),y\right),N_{1}\left(S(\overline{y}),y% \right)\right)+d\left(N_{1}\left(S(\overline{y}),y\right),N_{1}\left(S(% \overline{y}),\overline{y}\right)\right)≤ italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( italic_y ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , italic_y ) ) + italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , over¯ start_ARG italic_y end_ARG ) )
Ad(S(y),S(y¯))+d(N1(S(y¯),y),N1(S(y¯),y¯)),absent𝐴𝑑𝑆𝑦𝑆¯𝑦𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\displaystyle\leq Ad\left(S(y),S(\overline{y})\right)+d\left(N_{1}\left(S(% \overline{y}),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right),≤ italic_A italic_d ( italic_S ( italic_y ) , italic_S ( over¯ start_ARG italic_y end_ARG ) ) + italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , over¯ start_ARG italic_y end_ARG ) ) ,

which implies

(B1A)d(S(y),S(y¯))d(N1(S(y¯),y),N1(S(y¯),y¯)),superscript𝐵1𝐴𝑑𝑆𝑦𝑆¯𝑦𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\left(B^{-1}-A\right)d(S(y),S(\overline{y}))\leq d\left(N_{1}\left(S(\overline% {y}),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right),( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) italic_d ( italic_S ( italic_y ) , italic_S ( over¯ start_ARG italic_y end_ARG ) ) ≤ italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , over¯ start_ARG italic_y end_ARG ) ) ,

while in case (b), one has

(IBA)d(S(y),S(y¯))Bd(N1(S(y¯),y),N1(S(y¯),y¯)).𝐼𝐵𝐴𝑑𝑆𝑦𝑆¯𝑦𝐵𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\left(I-BA\right)d(S(y),S(\overline{y}))\leq Bd\left(N_{1}\left(S(\overline{y}% ),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right).( italic_I - italic_B italic_A ) italic_d ( italic_S ( italic_y ) , italic_S ( over¯ start_ARG italic_y end_ARG ) ) ≤ italic_B italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , over¯ start_ARG italic_y end_ARG ) ) .

Since B1Asuperscript𝐵1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A and IBA𝐼𝐵𝐴I-BAitalic_I - italic_B italic_A are inverse-positive, respectively, in case (a), we deduce that

(3.17) d(S(y),S(y¯))(B1A)1d(N1(S(y¯),y),N1(S(y¯),y¯)),𝑑𝑆𝑦𝑆¯𝑦superscriptsuperscript𝐵1𝐴1𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦d(S(y),S(\overline{y}))\leq\left(B^{-1}-A\right)^{-1}d\left(N_{1}\left(S(% \overline{y}),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right),italic_d ( italic_S ( italic_y ) , italic_S ( over¯ start_ARG italic_y end_ARG ) ) ≤ ( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , over¯ start_ARG italic_y end_ARG ) ) ,

and in case (b),

(3.18) d(S(y),S(y¯))(IBA)1Bd(N1(S(y¯),y),N1(S(y¯),y¯)).𝑑𝑆𝑦𝑆¯𝑦superscript𝐼𝐵𝐴1𝐵𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦d(S(y),S(\overline{y}))\leq\left(I-BA\right)^{-1}Bd\left(N_{1}\left(S(% \overline{y}),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right).italic_d ( italic_S ( italic_y ) , italic_S ( over¯ start_ARG italic_y end_ARG ) ) ≤ ( italic_I - italic_B italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( over¯ start_ARG italic_y end_ARG ) , over¯ start_ARG italic_y end_ARG ) ) .

Then, for any convergent sequence (yk)D,subscript𝑦𝑘𝐷\left(y_{k}\right)\subset D,( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⊂ italic_D , ykysubscript𝑦𝑘superscript𝑦y_{k}\rightarrow y^{\ast}italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT as k,𝑘k\rightarrow\infty,italic_k → ∞ , the continuity of N1(S(y),.)N_{1}\left(S\left(y^{\ast}\right),.\right)italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , . ) together with relations (3.17) and (3.18) implies that d(S(yk),S(y))0𝑑𝑆subscript𝑦𝑘𝑆superscript𝑦0d(S(y_{k}),S(y^{\ast}))\rightarrow 0italic_d ( italic_S ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_S ( italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) → 0 as k.𝑘k\rightarrow\infty.italic_k → ∞ . Thus, S𝑆Sitalic_S is continuous, and since N2subscript𝑁2N_{2}italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is continuous, the composed mapping

N2(S(.),.):DDN_{2}(S(.),.):D\rightarrow Ditalic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_S ( . ) , . ) : italic_D → italic_D

is continuous too. Since its range is relatively compact by condition (iii), Schauder’s fixed point theorem applies and guarantees the existence of a point yDsuperscript𝑦𝐷y^{\ast}\in Ditalic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_D such that

(3.19) N2(S(y),y)=y.subscript𝑁2𝑆superscript𝑦superscript𝑦superscript𝑦N_{2}\left(S(y^{\ast}),y^{\ast}\right)=y^{\ast}.italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_S ( italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

Finally, denoting x:=S(y),assignsuperscript𝑥𝑆superscript𝑦x^{\ast}:=S(y^{\ast}),italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT := italic_S ( italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , from (3.16) and (3.19) we have the conclusion. ∎

Remark 3.9.

Without the invariance condition N2(X×D)D,subscript𝑁2𝑋𝐷𝐷N_{2}\left(X\times D\right)\subset D,italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X × italic_D ) ⊂ italic_D , a similar result holds if D𝐷Ditalic_D is a closed ball BRsubscript𝐵𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT centered at the origin and of radius R𝑅Ritalic_R in the space (Y,.),\left(Y,\left\|.\right\|\right),( italic_Y , ∥ . ∥ ) , provided that Schaefer’s fixed point theorem is used instead of Schauder’s theorem. In this case, in addition to conditions (i) and (ii), we need the Leray-Schauder condition

yλN2(x,y),𝑦𝜆subscript𝑁2𝑥𝑦y\neq\lambda N_{2}\left(x,y\right),italic_y ≠ italic_λ italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) ,

for all xX,𝑥𝑋x\in X,italic_x ∈ italic_X , yY𝑦𝑌y\in Yitalic_y ∈ italic_Y with y=R,norm𝑦𝑅\left\|y\right\|=R,∥ italic_y ∥ = italic_R , and λ(0,1).𝜆01\lambda\in\left(0,1\right).italic_λ ∈ ( 0 , 1 ) .

In particular, for scalar b𝑏bitalic_b-metric spaces, conditions (a) and (b) from hypothesis (ii) of Theorem 3.8 are the same and reduce to the unique requirement that the product of b𝑏bitalic_b and the Lipschitz constant a𝑎aitalic_a of N𝑁Nitalic_N is less than one. More exactly, Theorem 3.8 reads as follows.

Theorem 3.10 (Avramescu theorem in b𝑏bitalic_b-metric spaces).

Let (X,ρ)𝑋𝜌(X,\rho)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space (b1)𝑏1\left(b\geq 1\right)( italic_b ≥ 1 ), D𝐷Ditalic_D a nonempty closed convex subset of a normed space Y,𝑌Y,italic_Y , N1:X×DX:subscript𝑁1𝑋𝐷𝑋N_{1}:X\times D\rightarrow Xitalic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_X × italic_D → italic_X and N2:X×DD:subscript𝑁2𝑋𝐷𝐷N_{2}:X\times D\rightarrow Ditalic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_X × italic_D → italic_D be two mappings. Assume that the following conditions are satisfied:

  1. (i)

    N1(x,.)N_{1}\left(x,.\right)italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , . ) is continuous for every xX𝑥𝑋x\in Xitalic_x ∈ italic_X and there is a constant a0𝑎0a\geq 0italic_a ≥ 0 such that

    ρ(N1(x,y),N2(x¯,y))aρ(x,x¯),𝜌subscript𝑁1𝑥𝑦subscript𝑁2¯𝑥𝑦𝑎𝜌𝑥¯𝑥\rho(N_{1}(x,y),N_{2}(\overline{x},y))\leq a\rho(x,\overline{x}),italic_ρ ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) , italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( over¯ start_ARG italic_x end_ARG , italic_y ) ) ≤ italic_a italic_ρ ( italic_x , over¯ start_ARG italic_x end_ARG ) ,

    for all x,x¯X𝑥¯𝑥𝑋x,\overline{x}\in Xitalic_x , over¯ start_ARG italic_x end_ARG ∈ italic_X and yD;𝑦𝐷y\in D;italic_y ∈ italic_D ;

  2. (ii)

    ab<1;𝑎𝑏1ab<1;italic_a italic_b < 1 ;

  3. (iii)

    N2subscript𝑁2N_{2}italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is continuous and N2(X×D)subscript𝑁2𝑋𝐷N_{2}(X\times D)italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X × italic_D ) is a relatively compact subset of Y𝑌Yitalic_Y .

Then, there exists (x,y)X×Dsuperscript𝑥superscript𝑦𝑋𝐷(x^{\ast},y^{\ast})\in X\times D( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ∈ italic_X × italic_D such that N1(x,y)=xsubscript𝑁1superscript𝑥superscript𝑦superscript𝑥\ N_{1}(x^{\ast},y^{\ast})=x^{\ast}italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and N2(x,y)=y.subscript𝑁2superscript𝑥superscript𝑦superscript𝑦\ N_{2}(x^{\ast},y^{\ast})=y^{\ast}.italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

4. Ekeland’s principle and Caristi’s fixed point theorem in vector B𝐵Bitalic_B-metric spaces

4.1. Classical results

We first recall for comparison the classical results in metric spaces (see, [30, 31, 32, 33]).

Theorem 4.1 (Weak Ekeland variational principle).

Let (X,ρ)𝑋𝜌\ \left(X,\rho\right)( italic_X , italic_ρ ) be a complete metric space and let f:X:𝑓𝑋\ f:X\rightarrow\mathbf{\mathbb{R}}italic_f : italic_X → blackboard_R be a lower semicontinuous function bounded from below. Then, for given ε>0𝜀0\ \varepsilon>0italic_ε > 0 and x0X,subscript𝑥0𝑋\ x_{0}\in X,italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X , there exists a point xXsuperscript𝑥𝑋\ x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_X such that

f(x)f(x0)ερ(x,x0)𝑓superscript𝑥𝑓subscript𝑥0𝜀𝜌superscript𝑥subscript𝑥0f\left(x^{\ast}\right)\leq f\left(x_{0}\right)-\varepsilon\rho\left(x^{\ast},x% _{0}\right)italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_ε italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )

and

f(x)<f(x)+ερ(x,x)for all xX,xx.formulae-sequence𝑓superscript𝑥𝑓𝑥𝜀𝜌superscript𝑥𝑥formulae-sequencefor all 𝑥𝑋𝑥superscript𝑥f\left(x^{\ast}\right)<f\left(x\right)+\varepsilon\rho\left(x^{\ast},x\right)% \ \ \ \text{for all \ }x\in X,\ x\neq x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + italic_ε italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) for all italic_x ∈ italic_X , italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .
Theorem 4.2 (Strong Ekeland variational principle).

Let (X,ρ)𝑋𝜌(X,\rho)( italic_X , italic_ρ ) be a complete metric space, and let f:X:𝑓𝑋f:X\rightarrow\mathbb{R}italic_f : italic_X → blackboard_R be a lower semicontinuous function that is bounded from below. For given ε>0𝜀0\varepsilon>0italic_ε > 0, δ>0𝛿0\delta>0italic_δ > 0, and x0Xsubscript𝑥0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X satisfying

f(x0)infxXf(x)+ε,𝑓subscript𝑥0subscriptinfimum𝑥𝑋𝑓𝑥𝜀f(x_{0})\leq\inf_{x\in X}f(x)+\varepsilon,italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ roman_inf start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT italic_f ( italic_x ) + italic_ε ,

there exists a point xXsuperscript𝑥𝑋x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_X such that the following hold:

f(x)f(x0),𝑓superscript𝑥𝑓subscript𝑥0\displaystyle f(x^{\ast})\leq f(x_{0}),italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,
ρ(x,x0)δ,𝜌superscript𝑥subscript𝑥0𝛿\displaystyle\rho(x^{\ast},x_{0})\leq\delta,italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ italic_δ ,
f(x)<f(x)+εδρ(x,x)for all xX,xx.formulae-sequence𝑓superscript𝑥𝑓𝑥𝜀𝛿𝜌superscript𝑥𝑥formulae-sequencefor all 𝑥𝑋𝑥superscript𝑥\displaystyle f(x^{\ast})<f(x)+\frac{\varepsilon}{\delta}\rho(x^{\ast},x)\ \,% \,\ \text{for all }x\in X,\ x\neq x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) for all italic_x ∈ italic_X , italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

Below, we have a version of Ekeland’s variational principle for scalar b𝑏bitalic_b-metric spaces (see, [19]).

Theorem 4.3 ([19]).

Let (X,ρ)𝑋𝜌(X,\rho)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space with b>1𝑏1b>1italic_b > 1, where the b𝑏bitalic_b-metric ρ𝜌\rhoitalic_ρ is continuous. Let f:X:𝑓𝑋f:X\rightarrow\mathbb{R}italic_f : italic_X → blackboard_R be a lower semicontinuous function bounded from below. For a given ε>0𝜀0\varepsilon>0italic_ε > 0 and x0Xsubscript𝑥0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X satisfying

f(x0)infxXf(x)+ε,𝑓subscript𝑥0subscriptinfimum𝑥𝑋𝑓𝑥𝜀f(x_{0})\leq\inf_{x\in X}f(x)+\varepsilon,italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ roman_inf start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT italic_f ( italic_x ) + italic_ε ,

there exists a sequence (xk)Xsubscript𝑥𝑘𝑋(x_{k})\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⊂ italic_X and a point xXsuperscript𝑥𝑋x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_X such that:

xkxas k,formulae-sequencesubscript𝑥𝑘superscript𝑥as 𝑘\displaystyle x_{k}\rightarrow x^{\ast}\quad\text{as }k\rightarrow\infty,italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT as italic_k → ∞ ,
ρ(x,xk)ε2k,k,formulae-sequence𝜌superscript𝑥subscript𝑥𝑘𝜀superscript2𝑘𝑘\displaystyle\rho(x^{\ast},x_{k})\leq\frac{\varepsilon}{2^{k}},\quad k\in% \mathbb{N},italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≤ divide start_ARG italic_ε end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG , italic_k ∈ blackboard_N ,
f(x)f(x0)k=01bkρ(x,xk),𝑓superscript𝑥𝑓subscript𝑥0superscriptsubscript𝑘01superscript𝑏𝑘𝜌superscript𝑥subscript𝑥𝑘\displaystyle f(x^{\ast})\leq f(x_{0})-\sum_{k=0}^{\infty}\frac{1}{b^{k}}\rho(% x^{\ast},x_{k}),italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,
f(x)+k=01bkρ(x,xk)<f(x)+k=01bkρ(x,xk),for xx.formulae-sequence𝑓superscript𝑥superscriptsubscript𝑘01superscript𝑏𝑘𝜌superscript𝑥subscript𝑥𝑘𝑓𝑥superscriptsubscript𝑘01superscript𝑏𝑘𝜌𝑥subscript𝑥𝑘for 𝑥superscript𝑥\displaystyle f(x^{\ast})+\sum_{k=0}^{\infty}\frac{1}{b^{k}}\rho(x^{\ast},x_{k% })<f(x)+\sum_{k=0}^{\infty}\frac{1}{b^{k}}\rho(x,x_{k}),\quad\text{for }x\neq x% ^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f ( italic_x ) + ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG italic_ρ ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , for italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

The proof of Theorem 4.3 in [19] is based on the version for scalar b𝑏bitalic_b-metric spaces of Cantor’s intersection lemma.

Lemma 4.4 ([19]).

Let (X,ρ)𝑋𝜌\left(X,\rho\right)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space. For every descending sequence (Fk)k1subscriptsubscript𝐹𝑘𝑘1\left(F_{k}\right)_{k\geq 1}( italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k ≥ 1 end_POSTSUBSCRIPT of nonempty closed subsets of X𝑋Xitalic_X with diam(Fk)ρ0{}_{\rho}\left(F_{k}\right)\rightarrow 0start_FLOATSUBSCRIPT italic_ρ end_FLOATSUBSCRIPT ( italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) → 0 as k,𝑘k\rightarrow\infty,italic_k → ∞ , the intersection k=1Fksuperscriptsubscript𝑘1subscript𝐹𝑘\bigcap\limits_{k=1}^{\infty}F_{k}⋂ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT contains one and only one element.

Let us first note that a version of Cantor’s intersection lemma remains true in complete vector B𝐵Bitalic_B-metric spaces.

Lemma 4.5.

Let (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) be a complete vector B𝐵Bitalic_B-metric space, and let (Fk)k1subscriptsubscript𝐹𝑘𝑘1\left(F_{k}\right)_{k\geq 1}( italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k ≥ 1 end_POSTSUBSCRIPT be a descending sequence of nonempty closed subsets of X𝑋Xitalic_X. Assume that for every ε>0𝜀0\varepsilon>0italic_ε > 0, there exists k01subscript𝑘01k_{0}\geq 1italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≥ 1 such that

(4.1) d(x,y)εe for all x,yFk and kk0,formulae-sequence𝑑𝑥𝑦𝜀𝑒 for all 𝑥𝑦subscript𝐹𝑘 and 𝑘subscript𝑘0d(x,y)\leq\varepsilon e\ \ \text{ for all }x,y\in F_{k}\text{ and }k\geq k_{0},italic_d ( italic_x , italic_y ) ≤ italic_ε italic_e for all italic_x , italic_y ∈ italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and italic_k ≥ italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ,

where e=(1,1,,1)𝑒111e=(1,1,\ldots,1)italic_e = ( 1 , 1 , … , 1 ). Then, the intersection k=1Fksuperscriptsubscript𝑘1subscript𝐹𝑘\bigcap\limits_{k=1}^{\infty}F_{k}⋂ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT contains exactly one element.

Proof.

As stated in the Preliminaries, condition (4.1) implies that the diameter of Fksubscript𝐹𝑘F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT with respect to the scalar b𝑏bitalic_b-metric ρ1subscript𝜌1\rho_{1}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT tends to zero. Since (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) is complete, it follows that (X,ρ1)𝑋subscript𝜌1(X,\rho_{1})( italic_X , italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is also complete. From Cantor’s lemma in scalar b𝑏bitalic_b-metric spaces (Lemma 4.4), we conclude that the intersection k=1Fksuperscriptsubscript𝑘1subscript𝐹𝑘\bigcap\limits_{k=1}^{\infty}F_{k}⋂ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT has exactly one element. ∎

4.2. Ekeland variational principle in vector B𝐵Bitalic_B-metric spaces

First we state and prove a version of the weak form of Ekeland’s variational principle in vector B𝐵Bitalic_B-metric spaces.

Theorem 4.6 (Weak Ekeland variational principle in vector B𝐵Bitalic_B-metric spaces).

Let (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) be a complete vector B𝐵Bitalic_B-metric space such that the B𝐵Bitalic_B-metric d𝑑ditalic_d is continuous, and let f:Xn:𝑓𝑋superscript𝑛f:X\rightarrow\mathbb{R}^{n}italic_f : italic_X → blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT be a lower semicontinuous function bounded from below. Assume that f𝑓fitalic_f satisfies the following condition:

(H):

For every nonempty closed subset FX𝐹𝑋F\subset Xitalic_F ⊂ italic_X and every ε>0𝜀0\varepsilon>0italic_ε > 0, there exists a point xε,FFsubscript𝑥𝜀𝐹𝐹x_{\varepsilon,F}\in Fitalic_x start_POSTSUBSCRIPT italic_ε , italic_F end_POSTSUBSCRIPT ∈ italic_F such that

(4.2) f(xε,F)f(x)+εe,for all xF,formulae-sequence𝑓subscript𝑥𝜀𝐹𝑓𝑥𝜀𝑒for all 𝑥𝐹f(x_{\varepsilon,F})\leq f(x)+\varepsilon e,\quad\text{for all }x\in F,italic_f ( italic_x start_POSTSUBSCRIPT italic_ε , italic_F end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x ) + italic_ε italic_e , for all italic_x ∈ italic_F ,

where e=(1,1,,1)n𝑒111superscript𝑛e=(1,1,\ldots,1)\in\mathbb{R}^{n}italic_e = ( 1 , 1 , … , 1 ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT.

Then, for a given x0Xsubscript𝑥0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X, there exists a sequence {xk}Xsubscript𝑥𝑘𝑋\{x_{k}\}\subset X{ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } ⊂ italic_X and a point xXsuperscript𝑥𝑋x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_X such that xkxsubscript𝑥𝑘superscript𝑥x_{k}\to x^{\ast}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT as k𝑘k\to\inftyitalic_k → ∞,

(4.3) f(x)f(x0)d(x,x0),𝑓superscript𝑥𝑓subscript𝑥0𝑑superscript𝑥subscript𝑥0f(x^{\ast})\leq f(x_{0})-d(x^{\ast},x_{0}),italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,

and

(4.4) f(x)+d(x,xk)f(x)+d(x,xk)for all k0implies x=x.formulae-sequence𝑓superscript𝑥𝑑superscript𝑥subscript𝑥𝑘𝑓𝑥𝑑𝑥subscript𝑥𝑘formulae-sequencefor all 𝑘0implies 𝑥superscript𝑥f(x^{\ast})+d(x^{\ast},x_{k})\geq f(x)+d(x,x_{k})\quad\text{for all }k\geq 0% \quad\text{implies }x=x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≥ italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for all italic_k ≥ 0 implies italic_x = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

Moreover,

(4.5) f(x)f(x)+Bd(x,x)+(BI)d(x,xk)for all k0implies x=x.formulae-sequence𝑓superscript𝑥𝑓𝑥𝐵𝑑superscript𝑥𝑥𝐵𝐼𝑑superscript𝑥subscript𝑥𝑘formulae-sequencefor all 𝑘0implies 𝑥superscript𝑥f(x^{\ast})\geq f(x)+Bd(x^{\ast},x)+(B-I)d(x^{\ast},x_{k})\quad\text{for all }% k\geq 0\quad\text{implies }x=x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≥ italic_f ( italic_x ) + italic_B italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) + ( italic_B - italic_I ) italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for all italic_k ≥ 0 implies italic_x = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .
Proof.

Let us fix a sequence (εk)subscript𝜀𝑘\left(\varepsilon_{k}\right)( italic_ε start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) of positive numbers satisfying εk0subscript𝜀𝑘0\varepsilon_{k}\rightarrow 0italic_ε start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → 0 as k.𝑘k\rightarrow\infty.italic_k → ∞ . We now proceed to construct the sequence (xk).subscript𝑥𝑘\left(x_{k}\right).( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . Let

F(x0):={xX:f(x)+d(x,x0)f(x0)}.assign𝐹subscript𝑥0conditional-set𝑥𝑋𝑓𝑥𝑑𝑥subscript𝑥0𝑓subscript𝑥0F\left(x_{0}\right):=\left\{x\in X:\ f\left(x\right)+d\left(x,x_{0}\right)\leq f% \left(x_{0}\right)\right\}.italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) := { italic_x ∈ italic_X : italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) } .

Clearly, x0F(x0)subscript𝑥0𝐹subscript𝑥0x_{0}\in F\left(x_{0}\right)italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and F(x0)𝐹subscript𝑥0F\left(x_{0}\right)italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is closed because d𝑑ditalic_d is continuous and f𝑓fitalic_f is lower semicontinuous. Then, by assumption (4.2), there exists a point x1F(x0)subscript𝑥1𝐹subscript𝑥0x_{1}\in F\left(x_{0}\right)italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) with

f(x1)f(x)+ε1efor all xF(x0).formulae-sequence𝑓subscript𝑥1𝑓𝑥subscript𝜀1𝑒for all 𝑥𝐹subscript𝑥0f\left(x_{1}\right)\leq f\left(x\right)+\varepsilon_{1}e\ \ \ \text{for all }x\in F\left(x_{0}\right).italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x ) + italic_ε start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e for all italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Define

F(x1):={xF(x0):f(x)+d(x,x1)f(x1)},assign𝐹subscript𝑥1conditional-set𝑥𝐹subscript𝑥0𝑓𝑥𝑑𝑥subscript𝑥1𝑓subscript𝑥1F\left(x_{1}\right):=\left\{x\in F\left(x_{0}\right):\ f\left(x\right)+d\left(% x,x_{1}\right)\leq f\left(x_{1}\right)\right\},italic_F ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) := { italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) : italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) } ,

and recursively, having xkF(xk1)subscript𝑥𝑘𝐹subscript𝑥𝑘1x_{k}\in F\left(x_{k-1}\right)italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) with

f(xk)f(x)+εkefor all xF(xk1),formulae-sequence𝑓subscript𝑥𝑘𝑓𝑥subscript𝜀𝑘𝑒for all 𝑥𝐹subscript𝑥𝑘1f\left(x_{k}\right)\leq f\left(x\right)+\varepsilon_{k}e\ \ \ \text{for all }x\in F\left(x_{k-1}\right),italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x ) + italic_ε start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_e for all italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) ,

we define

F(xk):={xF(xk1):f(x)+d(x,xk)f(xk)}.assign𝐹subscript𝑥𝑘conditional-set𝑥𝐹subscript𝑥𝑘1𝑓𝑥𝑑𝑥subscript𝑥𝑘𝑓subscript𝑥𝑘F\left(x_{k}\right):=\left\{x\in F\left(x_{k-1}\right):\ f\left(x\right)+d% \left(x,x_{k}\right)\leq f\left(x_{k}\right)\right\}.italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) := { italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) : italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) } .

The sets F(xk)𝐹subscript𝑥𝑘F\left(x_{k}\right)italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) are nonempty and closed, and by their definition form a descending sequence. To apply Cantor’s intersection lemma, we verify that their diameters tend to zero as k.𝑘k\rightarrow\infty.italic_k → ∞ . Indeed, for any yF(xk)F(xk1),𝑦𝐹subscript𝑥𝑘𝐹subscript𝑥𝑘1y\in F\left(x_{k}\right)\subset F\left(x_{k-1}\right),italic_y ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⊂ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) , one has

f(y)+d(y,xk)f(xk).𝑓𝑦𝑑𝑦subscript𝑥𝑘𝑓subscript𝑥𝑘f\left(y\right)+d\left(y,x_{k}\right)\leq f\left(x_{k}\right).italic_f ( italic_y ) + italic_d ( italic_y , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Also, from the definition of xk,subscript𝑥𝑘x_{k},italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,

f(xk)f(y)+εke.𝑓subscript𝑥𝑘𝑓𝑦subscript𝜀𝑘𝑒f\left(x_{k}\right)\leq f\left(y\right)+\varepsilon_{k}e.italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≤ italic_f ( italic_y ) + italic_ε start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_e .

Consequently, using the definition of F(xk)𝐹subscript𝑥𝑘F(x_{k})italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), we deduce

d(y,xk)f(xk)f(y)εke,𝑑𝑦subscript𝑥𝑘𝑓subscript𝑥𝑘𝑓𝑦subscript𝜀𝑘𝑒d\left(y,x_{k}\right)\leq f\left(x_{k}\right)-f\left(y\right)\leq\varepsilon_{% k}e,italic_d ( italic_y , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - italic_f ( italic_y ) ≤ italic_ε start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_e ,

whence, for every y1,y2F(xk),subscript𝑦1subscript𝑦2𝐹subscript𝑥𝑘y_{1},y_{2}\in F\left(x_{k}\right),italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , we have

d(y1,y2)B(d(y1,xk)+d(y2,xk)).𝑑subscript𝑦1subscript𝑦2𝐵𝑑subscript𝑦1subscript𝑥𝑘𝑑subscript𝑦2subscript𝑥𝑘d\left(y_{1},y_{2}\right)\leq B\left(d\left(y_{1},x_{k}\right)+d\left(y_{2},x_% {k}\right)\right).italic_d ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ≤ italic_B ( italic_d ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) + italic_d ( italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) .

As a result, diam(F(xk))d0{}_{d}\left(F\left(x_{k}\right)\right)\rightarrow 0start_FLOATSUBSCRIPT italic_d end_FLOATSUBSCRIPT ( italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) → 0 as k.𝑘k\rightarrow\infty.italic_k → ∞ . Thus, by Cantor’s lemma,

k=0F(xk)={x}.superscriptsubscript𝑘0𝐹subscript𝑥𝑘superscript𝑥\bigcap\limits_{k=0}^{\infty}F\left(x_{k}\right)=\left\{x^{\ast}\right\}.⋂ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) = { italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT } .

From xF(x0),superscript𝑥𝐹subscript𝑥0x^{\ast}\in F\left(x_{0}\right),italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , one has (4.3).

Next, we prove (4.4). To this end, we show the equivalent statement: if xx,𝑥superscript𝑥x\neq x^{\ast},italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , then there exists k=k(x)0𝑘𝑘𝑥0k=k\left(x\right)\geq 0italic_k = italic_k ( italic_x ) ≥ 0 such that

f(x)+d(x,xk)⩾̸f(x)+d(x,xk),not-greater-than-nor-equals𝑓superscript𝑥𝑑superscript𝑥subscript𝑥𝑘𝑓𝑥𝑑𝑥subscript𝑥𝑘f\left(x^{\ast}\right)+d\left(x^{\ast},x_{k}\right)\ngeqslant f\left(x\right)+% d\left(x,x_{k}\right),italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⩾̸ italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,

that is

fi(x)+di(x,xk)<fi(x)+di(x,xk)subscript𝑓𝑖superscript𝑥subscript𝑑𝑖superscript𝑥subscript𝑥𝑘subscript𝑓𝑖𝑥subscript𝑑𝑖𝑥subscript𝑥𝑘f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(x\right% )+d_{i}\left(x,x_{k}\right)italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT )

for at least one index i{1,2,,n}.𝑖12𝑛i\in\left\{1,2,...,n\right\}.italic_i ∈ { 1 , 2 , … , italic_n } .

Let xX,xxformulae-sequence𝑥𝑋𝑥superscript𝑥x\in X,\ x\neq x^{\ast}italic_x ∈ italic_X , italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT be arbitrary. Then xk=0F(xk).𝑥superscriptsubscript𝑘0𝐹subscript𝑥𝑘x\notin\bigcap\limits_{k=0}^{\infty}F\left(x_{k}\right).italic_x ∉ ⋂ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . We distinguish two cases:

(a) xF(x0);(b) xF(xk1)and xF(xk)for some k=k(x)1.formulae-sequence(a) 𝑥𝐹subscript𝑥0(b) 𝑥𝐹subscript𝑥𝑘1and 𝑥𝐹subscript𝑥𝑘for some 𝑘𝑘𝑥1\text{(a)\ \ }x\notin F\left(x_{0}\right);\ \ \text{(b)\ \ }x\in F\left(x_{k-1% }\right)\ \text{and }x\notin F\left(x_{k}\right)\ \text{for some }k=k\left(x% \right)\geq 1.(a) italic_x ∉ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ; (b) italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) and italic_x ∉ italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for some italic_k = italic_k ( italic_x ) ≥ 1 .

In case (a), we have f(x)+d(x,x0)⩽̸f(x0).not-less-than-nor-equals𝑓𝑥𝑑𝑥subscript𝑥0𝑓subscript𝑥0f\left(x\right)+d\left(x,x_{0}\right)\nleqslant f\left(x_{0}\right).italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ⩽̸ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) . In case (b), we have f(x)+d(x,xk)⩽̸f(xk).not-less-than-nor-equals𝑓𝑥𝑑𝑥subscript𝑥𝑘𝑓subscript𝑥𝑘f\left(x\right)+d\left(x,x_{k}\right)\nleqslant f\left(x_{k}\right).italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⩽̸ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . Thus, in both cases, there exists k=k(x)0𝑘𝑘𝑥0k=k\left(x\right)\geq 0italic_k = italic_k ( italic_x ) ≥ 0 such that f(x)+d(x,xk)⩽̸f(xk).not-less-than-nor-equals𝑓𝑥𝑑𝑥subscript𝑥𝑘𝑓subscript𝑥𝑘f\left(x\right)+d\left(x,x_{k}\right)\nleqslant f\left(x_{k}\right).italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⩽̸ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . This implies that there is some i{1,2,,n}𝑖12𝑛i\in\left\{1,2,...,n\right\}italic_i ∈ { 1 , 2 , … , italic_n } with

fi(x)+di(x,xk)>fi(xk).subscript𝑓𝑖𝑥subscript𝑑𝑖𝑥subscript𝑥𝑘subscript𝑓𝑖subscript𝑥𝑘f_{i}\left(x\right)+d_{i}\left(x,x_{k}\right)>f_{i}\left(x_{k}\right).italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) > italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

On the other hand, since xF(xk),superscript𝑥𝐹subscript𝑥𝑘x^{\ast}\in F\left(x_{k}\right),italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , one has f(x)+d(x,xk)f(xk).𝑓superscript𝑥𝑑superscript𝑥subscript𝑥𝑘𝑓subscript𝑥𝑘f\left(x^{\ast}\right)+d\left(x^{\ast},x_{k}\right)\leq f\left(x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . In particular, for the index i𝑖iitalic_i identified above, it holds that

fi(xk)fi(x)+di(x,xk).subscript𝑓𝑖subscript𝑥𝑘subscript𝑓𝑖superscript𝑥subscript𝑑𝑖superscript𝑥subscript𝑥𝑘f_{i}(x_{k})\geq f_{i}(x^{\ast})+d_{i}(x^{\ast},x_{k}).italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≥ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Then, from these two ineqialities we obtain

(4.6) fi(x)+di(x,xk)<fi(x)+di(x,xk),subscript𝑓𝑖superscript𝑥subscript𝑑𝑖superscript𝑥subscript𝑥𝑘subscript𝑓𝑖𝑥subscript𝑑𝑖𝑥subscript𝑥𝑘f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(x\right% )+d_{i}\left(x,x_{k}\right),italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,

which equivalently proves (4.4).

In order to establish (4.5), we apply the triangle inequality for d𝑑ditalic_d on the right hand side of (4.6), which gives,

fi(x)+di(x,xk)<fi(x)+di(x,xk)fi(x)+(Bd(x,xk))i+(Bd(x,x))i.subscript𝑓𝑖superscript𝑥subscript𝑑𝑖superscript𝑥subscript𝑥𝑘subscript𝑓𝑖𝑥subscript𝑑𝑖𝑥subscript𝑥𝑘subscript𝑓𝑖𝑥subscript𝐵𝑑superscript𝑥subscript𝑥𝑘𝑖subscript𝐵𝑑superscript𝑥𝑥𝑖f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(x\right% )+d_{i}\left(x,x_{k}\right)\leq f_{i}\left(x\right)+\left(Bd\left(x^{\ast},x_{% k}\right)\right)_{i}+\left(Bd\left(x^{\ast},x\right)\right)_{i}.italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≤ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + ( italic_B italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + ( italic_B italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT .

Hence

fi(x)+di(x,xk)<fi(x)+(Bd(x,xk))i+(Bd(x,x))i,subscript𝑓𝑖superscript𝑥subscript𝑑𝑖superscript𝑥subscript𝑥𝑘subscript𝑓𝑖𝑥subscript𝐵𝑑superscript𝑥subscript𝑥𝑘𝑖subscript𝐵𝑑superscript𝑥𝑥𝑖f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(x\right% )+\left(Bd\left(x^{\ast},x_{k}\right)\right)_{i}+\left(Bd\left(x^{\ast},x% \right)\right)_{i},italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + ( italic_B italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + ( italic_B italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ,

that is,

f(x)⩾̸f(x)+Bd(x,x)+(BI)d(x,xk).not-greater-than-nor-equals𝑓superscript𝑥𝑓𝑥𝐵𝑑superscript𝑥𝑥𝐵𝐼𝑑superscript𝑥subscript𝑥𝑘f\left(x^{\ast}\right)\ngeqslant f\left(x\right)+Bd\left(x^{\ast},x\right)+% \left(B-I\right)d\left(x^{\ast},x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ⩾̸ italic_f ( italic_x ) + italic_B italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) + ( italic_B - italic_I ) italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Thus, (4.5) holds. ∎

A version of the strong form of Ekeland’s variational principle in vector B𝐵Bitalic_B-metric spaces is the following one.

Theorem 4.7 (Strong Ekeland variational principle in vector B𝐵Bitalic_B-metric spaces).

Let (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) be a complete B𝐵Bitalic_B-metric space such that the B𝐵Bitalic_B-metric d𝑑ditalic_d is continuous, and let f:Xn:𝑓𝑋superscript𝑛f:X\rightarrow\mathbb{R}^{n}italic_f : italic_X → blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT be a lower semicontinuous function bounded from below and satisfying condition (H). Then, for given ε,δ>0𝜀𝛿0\ \varepsilon,\delta>0italic_ε , italic_δ > 0 and x0Xsubscript𝑥0𝑋\ x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X with

(4.7) f(x0)f(x)+εefor all xX,formulae-sequence𝑓subscript𝑥0𝑓𝑥𝜀𝑒for all 𝑥𝑋f\left(x_{0}\right)\leq f\left(x\right)+\varepsilon e\ \ \ \text{for all }x\in X,italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x ) + italic_ε italic_e for all italic_x ∈ italic_X ,

there exists a sequence (xk)Xsubscript𝑥𝑘𝑋\left(x_{k}\right)\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⊂ italic_X and xXsuperscript𝑥𝑋x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_X such that xkxsubscript𝑥𝑘superscript𝑥x_{k}\rightarrow x^{\ast}\ \ \ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPTas  k,𝑘k\rightarrow\infty,italic_k → ∞ ,

(4.8) f(x)f(x0),𝑓superscript𝑥𝑓subscript𝑥0f\left(x^{\ast}\right)\leq f\left(x_{0}\right),italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,
(4.9) d(x,x0)δe,𝑑superscript𝑥subscript𝑥0𝛿𝑒d\left(x^{\ast},x_{0}\right)\leq\delta e,italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ italic_δ italic_e ,
f(x)+εδd(x,xk)f(x)+εδd(x,xk)for all k0 implies x=x.formulae-sequence𝑓superscript𝑥𝜀𝛿𝑑superscript𝑥subscript𝑥𝑘𝑓𝑥𝜀𝛿𝑑𝑥subscript𝑥𝑘formulae-sequencefor all 𝑘0 implies 𝑥superscript𝑥f\left(x^{\ast}\right)+\frac{\varepsilon}{\delta}d\left(x^{\ast},x_{k}\right)% \geq f\left(x\right)+\frac{\varepsilon}{\delta}d\left(x,x_{k}\right)\ \ \text{% for all }k\geq 0\ \ \text{\ implies \ }x=x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≥ italic_f ( italic_x ) + divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for all italic_k ≥ 0 implies italic_x = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

Moreover,

f(x)f(x)+εδBd(x,x)+εδ(BI)d(x,xk)for all k0implies x=x.formulae-sequence𝑓superscript𝑥𝑓𝑥𝜀𝛿𝐵𝑑superscript𝑥𝑥𝜀𝛿𝐵𝐼𝑑superscript𝑥subscript𝑥𝑘formulae-sequencefor all 𝑘0implies 𝑥superscript𝑥f\left(x^{\ast}\right)\geq f\left(x\right)+\frac{\varepsilon}{\delta}Bd\left(x% ^{\ast},x\right)+\frac{\varepsilon}{\delta}\left(B-I\right)d\left(x^{\ast},x_{% k}\right)\ \ \text{for all }k\geq 0\ \ \ \text{implies \ }x=x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≥ italic_f ( italic_x ) + divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_B italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) + divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG ( italic_B - italic_I ) italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for all italic_k ≥ 0 implies italic_x = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .
Proof.

We apply the weak form of Ekeland’s variational principle, Theorem 4.6, to the vector B𝐵Bitalic_B-metric εδd.𝜀𝛿𝑑\frac{\varepsilon}{\delta}d.divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_d . From (4.3), we immediately obtain (4.8), while from xF(x0)superscript𝑥𝐹subscript𝑥0x^{\ast}\in F\left(x_{0}\right)italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and (4.7), we deduce

εδd(x,x0)f(x0)f(x)εe,𝜀𝛿𝑑superscript𝑥subscript𝑥0𝑓subscript𝑥0𝑓superscript𝑥𝜀𝑒\frac{\varepsilon}{\delta}d\left(x^{\ast},x_{0}\right)\leq f\left(x_{0}\right)% -f\left(x^{\ast}\right)\leq\varepsilon e,divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_ε italic_e ,

whence (4.9). The remaining conclusions follow directly. ∎

A consequence of the weak form of Ekeland’s variational principle is the following version of Caristi’s fixed point theorem (see [34]) in vector B𝐵Bitalic_B-metric spaces.

Theorem 4.8.

Let (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) be a complete vector B𝐵Bitalic_B-metric space such that the B𝐵Bitalic_B-metric d𝑑ditalic_d is continuous, and let f:Xn:𝑓𝑋superscript𝑛f:X\rightarrow\mathbb{R}^{n}italic_f : italic_X → blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT be a lower semicontinuous function bounded from below and satisfying condition (H). Assume that for an operator N:XX,:𝑁𝑋𝑋N:X\rightarrow X,italic_N : italic_X → italic_X , the following conditions are satisfied:

(4.10) d(N(x),y)d(x,y)+Bd(N(x),x),x,yXformulae-sequence𝑑𝑁𝑥𝑦𝑑𝑥𝑦𝐵𝑑𝑁𝑥𝑥𝑥𝑦𝑋d\left(N\left(x\right),y\right)\leq d\left(x,y\right)+Bd\left(N\left(x\right),% x\right),\ \ \ x,y\in Xitalic_d ( italic_N ( italic_x ) , italic_y ) ≤ italic_d ( italic_x , italic_y ) + italic_B italic_d ( italic_N ( italic_x ) , italic_x ) , italic_x , italic_y ∈ italic_X

and

(4.11) Bd(N(x),x)f(x)f(N(x)),xX.formulae-sequence𝐵𝑑𝑁𝑥𝑥𝑓𝑥𝑓𝑁𝑥𝑥𝑋Bd\left(N\left(x\right),x\right)\leq f\left(x\right)-f\left(N\left(x\right)% \right),\ \ \ x\in X.italic_B italic_d ( italic_N ( italic_x ) , italic_x ) ≤ italic_f ( italic_x ) - italic_f ( italic_N ( italic_x ) ) , italic_x ∈ italic_X .

Then, N𝑁Nitalic_N has at least one fixed point.

Proof.

Assume that N𝑁Nitalic_N has no fixed points. Then, applying Ekeland’s variational principle to f𝑓fitalic_f (Theorem 4.6), from (4.4), one has

f(x)+d(x,xk)⩾̸f(N(x))+d(N(x),xk)not-greater-than-nor-equals𝑓superscript𝑥𝑑superscript𝑥subscript𝑥𝑘𝑓𝑁superscript𝑥𝑑𝑁superscript𝑥subscript𝑥𝑘f\left(x^{\ast}\right)+d\left(x^{\ast},x_{k}\right)\ngeqslant f\left(N\left(x^% {\ast}\right)\right)+d\left(N\left(x^{\ast}\right),x_{k}\right)italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⩾̸ italic_f ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) + italic_d ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT )

for some k.𝑘k.italic_k . Therefore, there is an index i𝑖iitalic_i with

fi(x)+di(x,xk)<fi(N(x))+di(N(x),xk).subscript𝑓𝑖superscript𝑥subscript𝑑𝑖superscript𝑥subscript𝑥𝑘subscript𝑓𝑖𝑁superscript𝑥subscript𝑑𝑖𝑁superscript𝑥subscript𝑥𝑘f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(N\left(% x^{\ast}\right)\right)+d_{i}\left(N\left(x^{\ast}\right),x_{k}\right).italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Using (4.11) gives

(Bd(N(x),x))ifi(x)fi(N(x))<di(N(x),xk)di(x,xk),subscript𝐵𝑑𝑁superscript𝑥superscript𝑥𝑖subscript𝑓𝑖superscript𝑥subscript𝑓𝑖𝑁superscript𝑥subscript𝑑𝑖𝑁superscript𝑥subscript𝑥𝑘subscript𝑑𝑖superscript𝑥subscript𝑥𝑘\left(Bd\left(N\left(x^{\ast}\right),x^{\ast}\right)\right)_{i}\leq f_{i}\left% (x^{\ast}\right)-f_{i}\left(N\left(x^{\ast}\right)\right)<d_{i}\left(N\left(x^% {\ast}\right),x_{k}\right)-d_{i}\left(x^{\ast},x_{k}\right),( italic_B italic_d ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) - italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) < italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,

that is

di(x,xk)+(Bd(N(x),x))i<di(N(x),xk),subscript𝑑𝑖superscript𝑥subscript𝑥𝑘subscript𝐵𝑑𝑁superscript𝑥superscript𝑥𝑖subscript𝑑𝑖𝑁superscript𝑥subscript𝑥𝑘d_{i}\left(x^{\ast},x_{k}\right)+\left(Bd\left(N\left(x^{\ast}\right),x^{\ast}% \right)\right)_{i}<d_{i}\left(N\left(x^{\ast}\right),x_{k}\right),italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) + ( italic_B italic_d ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,

which contradicts (4.10). Consequently, N𝑁Nitalic_N has a fixed point. ∎

4.3. New versions of the Ekeland variational principle in b𝑏bitalic_b-metric spaces

We emphasize that in the scalar case, that is, when n=1,B=b1formulae-sequence𝑛1𝐵𝑏1n=1,\ B=b\geq 1italic_n = 1 , italic_B = italic_b ≥ 1 and d=ρ𝑑𝜌d=\rhoitalic_d = italic_ρ is a b𝑏bitalic_b-metric, our theorems from the previous subsection offer more natural versions in b𝑏bitalic_b-metric spaces to the classical results, as follows.

Theorem 4.9 (Weak Ekeland variational principle in b𝑏bitalic_b-metric spaces).

Let (X,ρ)𝑋𝜌\left(X,\rho\right)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space (b1𝑏1b\geq 1italic_b ≥ 1) such that the b𝑏bitalic_b-metric ρ𝜌\rhoitalic_ρ is continuous, and let f:X:𝑓𝑋f:X\rightarrow\mathbb{R}italic_f : italic_X → blackboard_R be a lower semicontinuous function bounded from below. Then, for given x0X,subscript𝑥0𝑋x_{0}\in X,italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X , there exists a sequence (xk)Xsubscript𝑥𝑘𝑋\left(x_{k}\right)\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⊂ italic_X and xXsuperscript𝑥𝑋x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_X such that xkxsubscript𝑥𝑘superscript𝑥x_{k}\rightarrow x^{\ast}\ \ \ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPTas  k,𝑘k\rightarrow\infty,italic_k → ∞ ,

f(x)f(x0)ρ(x,x0),𝑓superscript𝑥𝑓subscript𝑥0𝜌superscript𝑥subscript𝑥0f\left(x^{\ast}\right)\leq f\left(x_{0}\right)-\rho\left(x^{\ast},x_{0}\right),italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,

and for each xX,𝑥𝑋x\in X,italic_x ∈ italic_X , xx,𝑥superscript𝑥x\neq x^{\ast},italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , there exists an index k=k(x)𝑘𝑘𝑥k=k\left(x\right)italic_k = italic_k ( italic_x ) with

f(x)+ρ(x,xk)<f(x)+ρ(x,xk).𝑓superscript𝑥𝜌superscript𝑥subscript𝑥𝑘𝑓𝑥𝜌𝑥subscript𝑥𝑘f\left(x^{\ast}\right)+\rho\left(x^{\ast},x_{k}\right)<f\left(x\right)+\rho% \left(x,x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f ( italic_x ) + italic_ρ ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Moreover, for each xX,𝑥𝑋x\in X,italic_x ∈ italic_X , xx,𝑥superscript𝑥x\neq x^{\ast},italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , there exists an index k=k(x)𝑘𝑘𝑥k=k\left(x\right)italic_k = italic_k ( italic_x ) with

(4.12) f(x)<f(x)+bρ(x,x)+(b1)ρ(x,xk).𝑓superscript𝑥𝑓𝑥𝑏𝜌superscript𝑥𝑥𝑏1𝜌superscript𝑥subscript𝑥𝑘f\left(x^{\ast}\right)<f\left(x\right)+b\rho\left(x^{\ast},x\right)+\left(b-1% \right)\rho\left(x^{\ast},x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + italic_b italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) + ( italic_b - 1 ) italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .
Theorem 4.10 (Strong Ekeland variational principle in b𝑏bitalic_b-metric spaces).

Let (X,ρ)𝑋𝜌\left(X,\rho\right)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space (b1𝑏1b\geq 1italic_b ≥ 1) such that the b𝑏bitalic_b-metric ρ𝜌\rhoitalic_ρ is continuous, and let f:X:𝑓𝑋f:X\rightarrow\mathbb{R}italic_f : italic_X → blackboard_R be a lower semicontinuous function bounded from below. Then, for given ε,δ>0𝜀𝛿0\ \varepsilon,\delta>0italic_ε , italic_δ > 0 and x0Xsubscript𝑥0𝑋\ x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X with

f(x0)infxXf(x)+ε,𝑓subscript𝑥0subscriptinfimum𝑥𝑋𝑓𝑥𝜀f\left(x_{0}\right)\leq\inf_{x\in X}f\left(x\right)+\varepsilon,italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ roman_inf start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT italic_f ( italic_x ) + italic_ε ,

there exists a sequence (xk)Xsubscript𝑥𝑘𝑋\left(x_{k}\right)\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⊂ italic_X and xXsuperscript𝑥𝑋x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_X such that xkxsubscript𝑥𝑘superscript𝑥x_{k}\rightarrow x^{\ast}\ \ \ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPTas  k,𝑘k\rightarrow\infty,italic_k → ∞ ,

f(x)f(x0),𝑓superscript𝑥𝑓subscript𝑥0f\left(x^{\ast}\right)\leq f\left(x_{0}\right),italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,
ρ(x,x0)δ,𝜌superscript𝑥subscript𝑥0𝛿\rho\left(x^{\ast},x_{0}\right)\leq\delta,italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≤ italic_δ ,

and for each xX,𝑥𝑋x\in X,italic_x ∈ italic_X , xx,𝑥superscript𝑥x\neq x^{\ast},italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , there exists an index k=k(x)𝑘𝑘𝑥k=k\left(x\right)italic_k = italic_k ( italic_x ) with

f(x)+εδρ(x,xk)<f(x)+εδρ(x,xk).𝑓superscript𝑥𝜀𝛿𝜌superscript𝑥subscript𝑥𝑘𝑓𝑥𝜀𝛿𝜌𝑥subscript𝑥𝑘f\left(x^{\ast}\right)+\frac{\varepsilon}{\delta}\rho\left(x^{\ast},x_{k}% \right)<f\left(x\right)+\frac{\varepsilon}{\delta}\rho\left(x,x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) + divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f ( italic_x ) + divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_ρ ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Moreover, for each xX,𝑥𝑋x\in X,italic_x ∈ italic_X , xx,𝑥superscript𝑥x\neq x^{\ast},italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , there exists an index k=k(x)𝑘𝑘𝑥k=k\left(x\right)italic_k = italic_k ( italic_x ) with

(4.13) f(x)<f(x)+bεδρ(x,x)+(b1)εδρ(x,xk).𝑓superscript𝑥𝑓𝑥𝑏𝜀𝛿𝜌superscript𝑥𝑥𝑏1𝜀𝛿𝜌superscript𝑥subscript𝑥𝑘f\left(x^{\ast}\right)<f\left(x\right)+b\frac{\varepsilon}{\delta}\rho\left(x^% {\ast},x\right)+\left(b-1\right)\frac{\varepsilon}{\delta}\rho\left(x^{\ast},x% _{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + italic_b divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) + ( italic_b - 1 ) divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .
Theorem 4.11 (Caristi fixed point theorem in b𝑏bitalic_b-metric spaces).

Let (X,ρ)𝑋𝜌\left(X,\rho\right)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space (b1𝑏1b\geq 1italic_b ≥ 1) such that the b𝑏bitalic_b-metric ρ𝜌\rhoitalic_ρ is continuous, and let f:X:𝑓𝑋f:X\rightarrow\mathbb{R}italic_f : italic_X → blackboard_R be a lower semicontinuous function bounded from below. If for an operator N:XX,:𝑁𝑋𝑋N:X\rightarrow X,italic_N : italic_X → italic_X , one has

(4.14) ρ(N(x),y)ρ(x,y)+bρ(N(x),x),x,yXformulae-sequence𝜌𝑁𝑥𝑦𝜌𝑥𝑦𝑏𝜌𝑁𝑥𝑥𝑥𝑦𝑋\rho\left(N\left(x\right),y\right)\leq\rho\left(x,y\right)+b\rho\left(N\left(x% \right),x\right),\ \ \ x,y\in Xitalic_ρ ( italic_N ( italic_x ) , italic_y ) ≤ italic_ρ ( italic_x , italic_y ) + italic_b italic_ρ ( italic_N ( italic_x ) , italic_x ) , italic_x , italic_y ∈ italic_X

and

(4.15) bρ(N(x),x)f(x)f(N(x)),xX,formulae-sequence𝑏𝜌𝑁𝑥𝑥𝑓𝑥𝑓𝑁𝑥𝑥𝑋b\rho\left(N\left(x\right),x\right)\leq f\left(x\right)-f\left(N\left(x\right)% \right),\ \ \ x\in X,italic_b italic_ρ ( italic_N ( italic_x ) , italic_x ) ≤ italic_f ( italic_x ) - italic_f ( italic_N ( italic_x ) ) , italic_x ∈ italic_X ,

then N𝑁Nitalic_N has at least one fixed point.

The last three results reduce to the classical ones in ordinary metric spaces, i.e., if b=1.𝑏1b=1.italic_b = 1 . Thus, (4.12) reduces to

f(x)<f(x)+ρ(x,x),xx;formulae-sequence𝑓superscript𝑥𝑓𝑥𝜌superscript𝑥𝑥𝑥superscript𝑥f\left(x^{\ast}\right)<f\left(x\right)+\rho\left(x^{\ast},x\right),\ \ \ \ x% \neq x^{\ast};italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) , italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ;

(4.13) reduces to

f(x)<f(x)+εδρ(x,x),xx;formulae-sequence𝑓superscript𝑥𝑓𝑥𝜀𝛿𝜌superscript𝑥𝑥𝑥superscript𝑥f\left(x^{\ast}\right)<f\left(x\right)+\frac{\varepsilon}{\delta}\rho\left(x^{% \ast},x\right),\ \ \ \ x\neq x^{\ast};italic_f ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + divide start_ARG italic_ε end_ARG start_ARG italic_δ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_x ) , italic_x ≠ italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ;

assumption (4.14) trivially holds, while (4.15) becomes the classical Caristi’s inequality

ρ(N(x),x)f(x)f(N(x)),xX.formulae-sequence𝜌𝑁𝑥𝑥𝑓𝑥𝑓𝑁𝑥𝑥𝑋\rho\left(N\left(x\right),x\right)\leq f\left(x\right)-f\left(N\left(x\right)% \right),\ \ \ x\in X.italic_ρ ( italic_N ( italic_x ) , italic_x ) ≤ italic_f ( italic_x ) - italic_f ( italic_N ( italic_x ) ) , italic_x ∈ italic_X .

5. Conclusion and further research

In this paper, we introduced the concept of a vector B𝐵Bitalic_B-metric space. Several fixed-point theorems, analogous to those in scalar b𝑏bitalic_b-metric spaces as well as their classical counterparts, were presented. Additionally, we discussed some stability results. Finally, we provided a variant of Ekeland’s variational principle alongside a version of Caristi’s theorem. It remains an open question whether the assumption that B1Asuperscript𝐵1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A or IBA𝐼𝐵𝐴I-BAitalic_I - italic_B italic_A is inverse-positive can be omitted in Theorems 3.8, 3.6 and 3.7. Additionally, one may explore a variant of Ekeland’s variational principle where Caristi’s theorem holds without requiring the additional assumption (4.10). Lastly, it would be interesting to study the case where the matrix B𝐵Bitalic_B is neither positive nor inverse-positive; for instance, when it has positive diagonal elements but contains both positive and negative entries elsewhere.

6. Aknowledgements

The authors wish to mention that the notion of a vector B𝐵Bitalic_B-metric space was suggested by Professor Ioan A. Rus in the Seminar of Nonlinear Operators and Differential Equations at Babeş-Bolyai University.

References

  • [1] Wilson, W. A. On Quasi-Metric Spaces. Amer. J. Math. 1931, 675–684.
  • [2] Bakhtin, I.A. Contracting mapping principle in an almost metric space. Funktsionalnyi Analiz 1989, 30, 26–37.
  • [3] Czerwik, S. Contraction mappings in b𝑏bitalic_b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
  • [4] Coifman, R.R.; de Guzman, M. Singular integrals and multipliers on homogeneous spaces. Rev. Un. Mat. Argentina 1970/71, 25, 137–143.
  • [5] Hyers, D.H. A note on linear topological spaces. Bull. Amer. Math. Soc. 1938, 44, 76–80.
  • [6] Bourgin, D.G. Linear topological spaces. Amer. J. Math. 1943, 65, 637–659.
  • [7] Berinde, V.; Păcurar, M. The early developments in fixed point theory on b𝑏bitalic_b-metric spaces: A brief survey and some important related aspects. Carpathian J. Math. 2022, 38, 523–538.
  • [8] An, T.V.; Van Dung, N.; Kadelburg, Z.; Radenović, S. Various generalizations of metric spaces and fixed point theorems. RACSAM 2015, 109(1), 175–198.
  • [9] Mitrović, Z.D. Fixed point results in b𝑏bitalic_b-metric spaces. Fixed Point Theory 2019, 20, 559–566. https://doi.org/10.24193/fpt-ro.2019.2.36.
  • [10] Boriceanu, M.; Petruşel, A.; Rus, I.A. Fixed point theorems for some multivalued generalized contractions in b𝑏bitalic_b-metric spaces. Int. J. Math. Stat. 2010, 6, 65–76.
  • [11] Aydi, H.; Czerwik, S. Modern Discrete Mathematics and Analysis. Springer: Cham, Switzerland, 2018.
  • [12] Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces. Springer: Cham, Switzerland, 2014.
  • [13] Reich, S.; Zaslavski, A.J. Well-posedness of fixed point problems. Far East J. Math. Sci. 2001, Special Volume (Functional Analysis and its Applications), Part III, 393–401.
  • [14] Berinde, V. Generalized contractions in quasimetric spaces. Seminar on Fixed Point Theory, Preprint no. 3, 1993, 3–9.
  • [15] Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b𝑏bitalic_b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163.
  • [16] Suzuki, T. Basic inequality on a b𝑏bitalic_b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256.
  • [17] Bota, M.-F.; Micula, S. Ulam–Hyers stability via fixed point results for special contractions in b𝑏bitalic_b-metric spaces. Symmetry 2022, 14, 2461.
  • [18] Petrușel, A.; Petrușel, G. Graphical contractions and common fixed points in b𝑏bitalic_b-metric spaces. Arab. J. Math. 2023, 12, 423–430. https://doi.org/10.1007/s40065-022-00396-8.
  • [19] Bota, M.; Molnar, A.; Varga, C. On Ekeland’s variational principle in b𝑏bitalic_b-metric spaces. Fixed Point Theory 2011, 12, 21–28.
  • [20] Farkas, C; Molnár, A.; Nagy, S. A generalized variational principle in b𝑏bitalic_b-metric spaces. Le Matematiche 2014, 69(2), 205–221.
  • [21] Boriceanu, M. Fixed point theory on spaces with vector-valued b𝑏bitalic_b-metrics. Demonstr. Math. 2009, 42, 831–841.
  • [22] Precup, R. The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 2009, 49(3), 703–708.
  • [23] Berman, A.; Plemmons, R.J. Nonnegative matrices in the mathematical sciences. Academic Press: New York, USA, 1997.
  • [24] Collatz, L. Aufgaben monotoner Art. Arch. Math. (Basel) 1952, 3, 366–376.
  • [25] Cobzaș, Ș.; Czerwik, S. The completion of generalized b𝑏bitalic_b-metric spaces and fixed points. Fixed Point Theory 2020, 21(1), 133–150.
  • [26] Perov, A.I. On the Cauchy problem for a system of ordinary differential equations (Russian). Priblizhen. Metody Reshen. Differ. Uravn. 1964, 2, 115–134.
  • [27] Perov, A.I. Generalized principle of contraction mappings (Russian). Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2005, 1, 196–207.
  • [28] Ortega, J.M.; Rheinboldt, W.C. Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press: New York, USA, 1970.
  • [29] Avramescu, C. Asupra unei teoreme de punct fix. St. Cerc. Mat. 1970, 22, 215–221.
  • [30] Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47(2), 324–353.
  • [31] Mawhin, J.; Willem, M. Critical Point Theory And Hamiltonian Systems. Applied Mathematical Sciences: Springer, New York, USA, 1989.
  • [32] De Figueiredo, D.G. Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research: Bombay, India, 1989.
  • [33] Meghea, I. Ekeland Variational Principle with Generalizations and Variants. Old City Publishing: Philadelphia, USA, 2009.
  • [34] Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 1976, 215, 241–251.
2025

Related Posts