In this note we consider an approximation operator of Kantorovich type in which expression appears a basic sequence for a delta operator and a Sheffer sequence for the same delta operator.
We give a convergence theorem for this operator and we find its Lipschitz constant.
Authors
Maria Craciun
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)
Keywords
approximation operators of Kantorovich type; Sheffer sequences; Lipschitz constants.
[1] Agratini, O., On a certain class of approximation operators, Pure Math. Appl., 11, pp. 119–127, 2000.
[2] Brown, B. M., Elliot, D. and Paget, D. F., Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49, pp. 196–199, 1987.
[3] Craciun, M., Approximation operators constructed by means of Sheffer sequences, Rev. Anal. Numer. Theor. Approx., 30, 2001, pp. 135–150.
[4] Lupas, L. and Lupas, A., Polynomials of binomial type and approximation operators, Studia Univ. Babe¸s-Bolyai, Mathematica, 32, pp. 61–69, 1987.
[5] Manole, C., Approximation operators of binomial type, Univ. Cluj-Napoca, Research Seminar on Numerical and Statistical Calculus, Preprint no. 9, pp. 93–98, 1987.
[6] Mihesan, V., Approximation of continuous functions by means of linear positive operators, Ph.D. Thesis, Cluj-Napoca, 1997 (in Romanian).
[7] Moldovan, G., Discrete convolutions and linear positive operators, Ann. Univ. Sci. Budapest R. E¨otv¨os, 15, pp. 31–44, 1972.
[8] Popoviciu, T., Remarques sur les polynomes binomiaux, Bull. Soc. Math. Cluj, 6, pp. 146–148, 1931.
[9] Rota, G.-C., Kahaner, D. and Odlyzko, A., On the foundations of combinatorial theory. VIII. Finite operator calculus, J. Math. Anal. Appl., 42, pp. 684–760, 1973.
[10] Sablonniere, P., Positive Bernstein-Sheffer operators, J. Approx. Theory, 83, pp. 330–341, 1995.
[11] Stancu, D. D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures Appl., 13, pp. 1173–1194, 1968.
[12] Stancu, D. D., On the approximation of functions by means of the operators of binomial type of Tiberiu Popoviciu, Rev. Anal. Numer. Theor. Approx., 30, pp. 95–105, 2001.
[13] Stancu, D. D. and Occorsio, M. R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numer. Theor. Approx., 27, pp. 167–181, 1998.
Paper (preprint) in HTML form
craciun-2002-ANTA
ON AN APPROXIMATION OPERATOR AND ITS LIPSCHITZ CONSTANT
MARIA CRĂCIUN*
Abstract
In this note we consider an approximation operator of Kantorovich type in which expression appears a basic sequence for a delta operator and a Sheffer sequence for the same delta operator. We give a convergence theorem for this operator and we find its Lipschitz constant.
In this section we will remind some basic notions and results.
Let PP be the linear space of all polynomials with real coefficients.
A polynomial sequence is a sequence of polynomials (p_(n))\left(p_{n}\right) with degp_(n)=n\operatorname{deg} p_{n}=n for all n inNn \in \mathbb{N}.
A sequence of binomial type (a binomial sequence) is a polynomial sequence which satisfies the binomial identity
for all real x,yx, y and n=0,1,2,dotsn=0,1,2, \ldots.
The shift operator E^(a):P rarr PE^{a}: P \rightarrow P is defined by E^(a)p(x)=p(x+a)E^{a} p(x)=p(x+a).
A linear operator TT with TE^(a)=E^(a)TT E^{a}=E^{a} T for all real aa is called a shift invariant operator.
We recall that if T_(1)T_{1} and T_(2)T_{2} are shift invariant operators then T_(1)T_(2)=T_(2)T_(1)T_{1} T_{2}=T_{2} T_{1}.
A delta operator is a shift invariant operator for which Qx=Q x= const. !=0\neq 0.
A polynomial sequence ( p_(n)p_{n} ) is called a basic sequence for a delta operator QQ if p_(0)(x)=1,p_(n)(0)=0p_{0}(x)=1, p_{n}(0)=0 and Qp_(n)=np_(n-1),n=1,2,dotsQ p_{n}=n p_{n-1}, n=1,2, \ldots.
Proposition 1. [9]. i) Every delta operator has a unique basic sequence.
ii) A polynomial sequence is a binomial sequence if and only if it is a basic sequence for a delta operator QQ.
The Pincherle derivative of an operator TT is defined by T^(')=TX-XTT^{\prime}=T X-X T, where XX is the multiplication operator, Xp(x)=xp(x)X p(x)=x p(x).
The Pincherle derivative of a shift invariant operator is also a shift invariant operator and the Pincherle derivative of a delta operator is an invertible operator.
A polynomial sequence (s_(n))_(n >= 0)\left(s_{n}\right)_{n \geq 0} is called a Sheffer sequence relative to a delta operator QQ if s_(0)(x)=s_{0}(x)= const !=0\neq 0 and Qs_(n)=ns_(n-1),n=1,2,dotsQ s_{n}=n s_{n-1}, n=1,2, \ldots.
An Appell sequence is a Sheffer sequence relative to the derivative DD.
Proposition 2. [9]. Let QQ be a delta operator with the basic sequence (p_(n))\left(p_{n}\right) and (s_(n))\left(s_{n}\right) a polynomial sequence. The following statements are equivalent:
i) s_(n)s_{n} is a Sheffer set relative to QQ.
ii) There exists an invertible shift invariant operator SS such that s_(n)(x)=S^(-1)p_(n)(x)s_{n}(x)= S^{-1} p_{n}(x).
iii) For all x,y inRx, y \in \mathbb{R} and n=0,1,2,dotsn=0,1,2, \ldots the following identity holds:
where ( p_(n)p_{n} ) is the basic sequence for a delta operator QQ and ( s_(n)s_{n} ) is a Sheffer sequence for the same delta operator, s_(n)(1)!=0,AA n inN,s_(n)=S^(-1)p_(n)s_{n}(1) \neq 0, \forall n \in \mathbb{N}, s_{n}=S^{-1} p_{n} with SS an invertible shift invariant operator.
We remind that if p_(k)^(')(0) >= 0p_{k}^{\prime}(0) \geq 0 and s_(k)(0) >= 0s_{k}(0) \geq 0 for n=0,1,2,dotsn=0,1,2, \ldots then the operator L_(n)^(Q,S)L_{n}^{Q, S} defined by (1) is positive.
In this note we want to introduce an integral operator of Kantorovich type of the form
where f inL_(1)([0,1]),x in[0,1]f \in L_{1}([0,1]), x \in[0,1].
We mention that for S=IS=I (that means s_(n)=p_(n)s_{n}=p_{n} ) these operators were considered by O. Agratini in [1] and V. Miheşan in [6].
We recall that the expressions of the operator L_(n)^(Q,S)L_{n}^{Q, S} on the test functions e_(k)(x)=x^(k),k= bar(0,2)e_{k}(x)=x^{k}, k=\overline{0,2} are (see [3]):
where a_(n)=(((Q^('))^(-1)s_(n-1))(1))/(s_(n)(1)),quadb_(n)=(n-1)/(n)(((Q^('))^(-2)s_(n-2))(1))/(s_(n)(1)),quadc_(n)=(n-1)/(n)(((Q^('))^(-2)(S^(-1))^(')Ss_(n-2))(1))/(s_(n)(1))a_{n}=\frac{\left(\left(Q^{\prime}\right)^{-1} s_{n-1}\right)(1)}{s_{n}(1)}, \quad b_{n}=\frac{n-1}{n} \frac{\left(\left(Q^{\prime}\right)^{-2} s_{n-2}\right)(1)}{s_{n}(1)}, \quad c_{n}=\frac{n-1}{n} \frac{\left(\left(Q^{\prime}\right)^{-2}\left(S^{-1}\right)^{\prime} S s_{n-2}\right)(1)}{s_{n}(1)} and Q^(')Q^{\prime} is the Pincherle derivative of QQ.
Lemma 3. If K_(n)^(Q,S)K_{n}^{Q, S} is the linear operator defined by (2) then:
From this Lemma, the central moments of K_(n)^(Q,S)K_{n}^{Q, S} defined by Omega_(n,k)(x)=K_(n)^(Q,S)((e_(1)-xe_(0))^(k),x),k inN\Omega_{n, k}(x)= K_{n}^{Q, S}\left(\left(e_{1}-x e_{0}\right)^{k}, x\right), k \in \mathbb{N} are
Theorem 4. Let K_(n)^(Q,S)K_{n}^{Q, S} be the linear operator defined by (2) with p_(k)^(')(0) >= 0p_{k}^{\prime}(0) \geq 0 and s_(k)(0) >= 0,AA k inNs_{k}(0) \geq 0, \forall k \in \mathbb{N}.
i) If f in C[0,1],lim_(n rarr oo)a_(n)=lim_(n rarr oo)b_(n)=1f \in C[0,1], \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=1 then K_(n)^(Q,S)K_{n}^{Q, S} converges uniformly to ff.
ii) If f inL_(p)[0,1],lim_(n rarr oo)a_(n)=lim_(n rarr oo)b_(n)=1f \in L_{p}[0,1], \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=1 then ||K_(n)^(Q,S)f-f||_(p)=0\left\|K_{n}^{Q, S} f-f\right\|_{p}=0.
Proof. In [3] we proved that if p_(k)^(')(0) >= 0p_{k}^{\prime}(0) \geq 0 and s_(k)(0) >= 0,AA k inNs_{k}(0) \geq 0, \forall k \in \mathbb{N} then 0 <= c_(n) <= min{(1-b_(n))//2,a_(n)-a_(n)^(2)}0 \leq c_{n} \leq \min \left\{\left(1-b_{n}\right) / 2, a_{n}-a_{n}^{2}\right\}, so from lim_(n rarr oo)a_(n)=lim_(n rarr oo)b_(n)=1\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=1 we have lim_(n rarr oo)c_(n)=0\lim _{n \rightarrow \infty} c_{n}=0. Using Lemma 3 it results that lim_(n rarr oo)(K_(n)^(Q,S)e_(i))(x)=e_(i)(x)\lim _{n \rightarrow \infty}\left(K_{n}^{Q, S} e_{i}\right)(x)=e_{i}(x) for i=0,1,2i=0,1,2, and applying the convergence criterion of Bohman-Korovkin we obtain the first affirmation.
The second assertion follows immediately because the Korovkin subspaces in C[0,1]C[0,1] are also Korovkin subspaces in L_(p)[0,1]L_{p}[0,1].
3. LIPSCHITZ CONSTANTS FOR L_(n)^(Q,S)L_{n}^{Q, S} AND K_(n)^(Q,S)K_{n}^{Q, S}
In this section we want to find the Lipschitz constants for L_(n)^(Q,S)L_{n}^{Q, S} and K_(n)^(Q,S)K_{n}^{Q, S} if f inLip_(M)alphaf \in \operatorname{Lip}_{M} \alpha.
In [2] B.M. Brown, D. Elliot and D.F. Paget proved that the Bernstein operator ( B_(n)=L_(n)^(D,I)B_{n}=L_{n}^{D, I} ) preserves the Lipschitz constant of the function ff for alpha in(0,1]\alpha \in(0,1]. V. Miheşan showed in [6] that all positive binomial operators (which can be obtained by L_(n)^(Q,S)L_{n}^{Q, S} when S=IS=I ) preserve the Lipschitz constant of the function ff for alpha in(0,1]\alpha \in(0,1] and if f inLip_(M)^(**)(alpha,[0,1])f \in \operatorname{Lip}_{M}^{*}(\alpha,[0,1]) then L_(n)^(Q,I)f inLip_(2M)^(**)(alpha,[0,1])L_{n}^{Q, I} f \in \operatorname{Lip}_{2 M}^{*}(\alpha,[0,1]), where
Lip_(M)^(**)(alpha,[0,1])={f in C[0,1],omega_(2)(f,h) <= Mh^(alpha),0 < h <= (1)/(2)}.\operatorname{Lip}_{M}^{*}(\alpha,[0,1])=\left\{f \in C[0,1], \omega_{2}(f, h) \leq M h^{\alpha}, 0<h \leq \frac{1}{2}\right\} .
Theorem 5. If f inLip_(M)alpha,alpha in(0,1]f \in \operatorname{Lip}_{M} \alpha, \alpha \in(0,1], then L_(n)^(Q,S)f inLip_(Ma_(n)^(alpha))alphaL_{n}^{Q, S} f \in \operatorname{Lip}_{M a_{n}^{\alpha}} \alpha.
Proof. Let x <= yx \leq y be any two points of [0,1][0,1]. Using the binomial identity for p_(n)p_{n} we can write
Because f inLip_(M)alphaf \in \operatorname{Lip}_{M} \alpha we have |f((k+l)/(n))-f((k)/(n))| <= M((l)/(n))^(alpha)\left|f\left(\frac{k+l}{n}\right)-f\left(\frac{k}{n}\right)\right| \leq M\left(\frac{l}{n}\right)^{\alpha} so we obtain
We remind that for a convex function f we have f(a_(n)x) <= (L_(n)^(Q,S)f)(x)f\left(a_{n} x\right) \leq\left(L_{n}^{Q, S} f\right)(x) (see [3]). Since the function g(x)=-x^(alpha),alpha in(0,1]g(x)=-x^{\alpha}, \alpha \in(0,1], is convex on [0,1][0,1] we obtain
|(L_(n)^(Q,S)f)(y)-(L_(n)^(Q,S)f)(x)| <= Ma_(n)^(alpha)(y-x)^(alpha)\left|\left(L_{n}^{Q, S} f\right)(y)-\left(L_{n}^{Q, S} f\right)(x)\right| \leq M a_{n}^{\alpha}(y-x)^{\alpha}
Therefore L_(n)^(Q,S)f inLip_(M_(a_(n)^(alpha)))alphaL_{n}^{Q, S} f \in \operatorname{Lip}_{M_{a_{n}^{\alpha}}} \alpha.
Theorem 6. If f inLip_(M)alpha,alpha in(0,1]f \in \operatorname{Lip}_{M} \alpha, \alpha \in(0,1], then K_(n)^(Q,S)f inLip_(N_(n))alphaK_{n}^{Q, S} f \in \operatorname{Lip}_{N_{n}} \alpha, where N_(n)=M((na_(n))/(n+1))^(alpha)N_{n}=M\left(\frac{n a_{n}}{n+1}\right)^{\alpha}.
Proof. We can write K_(n)^(Q,S)f=L_(n)^(Q,S)h_(n)K_{n}^{Q, S} f=L_{n}^{Q, S} h_{n}, where
So, f inLip_(M)alphaf \in \operatorname{Lip}_{M} \alpha implies h_(n)inLip_(M((n)/(n+1))^(alpha))alphah_{n} \in \operatorname{Lip}_{M\left(\frac{n}{n+1}\right)^{\alpha}} \alpha. From K_(n)^(Q,S)f=L_(n)^(Q,S)h_(n)K_{n}^{Q, S} f=L_{n}^{Q, S} h_{n} and the previous theorem we obtain the conclusion.
REFERENCES
[1] Agratini, O., On a certain class of approximation operators, Pure Math. Appl., 11, pp. 119-127, 2000.
[2] Brown, B. M., Elliot, D. and Paget, D. F., Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49, pp. 196-199, 1987.
[3] Crăciun, M., Approximation operators constructed by means of Sheffer sequences, Rev. Anal. Numér. Théor. Approx., 30, 2001, pp. 135-150.
[4] Lupaş, L. and Lupaş, A., Polynomials of binomial type and approximation operators, Studia Univ. Babeş-Bolyai, Mathematica, 32, pp. 61-69, 1987.
[5] Manole, C., Approximation operators of binomial type, Univ. Cluj-Napoca, Research Seminar on Numerical and Statistical Calculus, Preprint no. 9, pp. 93-98, 1987.
[6] Miheşan, V., Approximation of continuous functions by means of linear positive operators, Ph.D. Thesis, Cluj-Napoca, 1997 (in Romanian).
[7] Moldovan, G., Discrete convolutions and linear positive operators, Ann. Univ. Sci. Budapest R. Eötvös, 15, pp. 31-44, 1972.
[8] Popoviciu, T., Remarques sur les polynomes binomiaux, Bull. Soc. Math. Cluj, 6, pp. 146-148, 1931.
[9] Rota, G.-C., Kahaner, D. and Odlyzko, A., On the foundations of combinatorial theory. VIII. Finite operator calculus, J. Math. Anal. Appl., 42, pp. 684-760, 1973.
[10] Sablonnière, P., Positive Bernstein-Sheffer operators, J. Approx. Theory, 83, pp. 330341, 1995.
[11] Stancu, D. D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures Appl., 13, pp. 1173-1194, 1968.
[12] Stancu, D. D., On the approximation of functions by means of the operators of binomial type of Tiberiu Popoviciu, Rev. Anal. Numér. Théor. Approx., 30, pp. 95-105, 2001.
[13] Stancu, D. D. and Occorsio, M. R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27, pp. 167-181, 1998.
Received by the editors: September 27, 2001.
"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: craciun@ictp.acad.ro.
AbstractIn the present note, we study a certain Durrmeyer type integral modification of Bernstein polynomials. We investigate simultaneous approximation and…
AbstractThe stochastic processes of finite length defined by recurrence relations request additional relations specifying the first terms of the process analogously to…