Abstract The inexact secant method \([x_{k-1},x_{k};F]s_{k}=-F(x_k) +r_k\), \( x_{k+1}=x_k+s_k\), \( k=1,2,\ldots\), \( x_0,x_1 \in {\mathbb R}^n\) is considered for solving the nonlinear…

Abstract Consider the nonlinear equations \(H(x):=F(x)+G(x)=0\), with \(F\) differentiable and \(G\) continuous, where \(F,G,H:X \rightarrow X\) are nonlinear operators and \(X\)…

Abstract Consider the nonlinear equation \(H(x):=F(x)+G(x)=0\), with \(F\) differentiable and \(G\) continuous, where \(F,G,H:X \rightarrow X\), \(X\) a Banach space. The…

AbstractWe comparatively use some classical spectral collocation methods as well as highly performing Chebfun algorithms in order to compute the eigenpairs of second order singular Sturm-Liouville problems with separated self-adjoint…

AbstractWe are concerned with the study of some classical spectral collocation methods as well as with the new software system Chebfun in computing high order eigenpairs of singular and regular…

AbstractWe solve by Chebyshev spectral collocation some genuinely nonlinear Liouville-Bratu-Gelfand type, 1D and a 2D boundary value problems. The problems are formulated on the square domain [−1, 1] × [−1,…