Abstract
In this paper we consider a functional integral equation of the form
\[
x(t)=g(t,x(t),x(h(t)))+\int_{a}^{t} f(s,x(h(s)))ds+\int_{a}^{b} K(s,x(h(s)))ds, \ \ t \in [a,b].
\]
Using the weakly Picard operator technique we establish existence, data dependence and comparison results for the solutions of the above equation.
Authors
V.A. Ilea
(Babes Bolyai Univ.)
D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,
Technical University of Cluj-Napoca)
Keywords
Functional-integral equation; weakly Picard operators; data dependence
Cite this paper as:
V.A. Ilea, D. Otrocol, An application of the Picard operator technique to functional integral equations, J. Nonlinear Convex Anal., Vol. 18 (2017) no. 3, pp. 405-413
About this paper
Journal
Journal of Nonlinear and Convex Analysis
Publisher Name
Yokohama, Japan
DOI
Print ISSN
1345-4773
Online ISSN
1880-5221
MR
MR3649198
ZBL
Google Scholar
???