Posts by Diana Otrocol

Abstract

Given a function defined on a square with one curved side, we consider some Bernstein-type operators as well as their product and Boolean sum. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.

Authors

T. Catinas
(Babes Bolyai Univ.)

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Keywords

Square with curved side, Bernstein operators, contraction principle, weakly Picard operators.

Cite this paper as:

T. Catinas, D.  Otrocol, Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory, 14(2013), no. 1, pp. 97-106

PDF

About this paper

Journal

Fixed Point Theory

Publisher Name

Casa Cartii de Stiinta, Cluj-Napoca, Romania

Print ISSN

1583-5022

Online ISSN

2066-9208

MR

MR3821782

ZBL

1397.34108

Google Scholar

[1] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline, 44(2003), 555-563.

[2] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8(2003), no. 2, 159-168.

[3] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on triangle with one curved side, Mediterr. J. Math., 10(2013), 10.1007/s00009-011-0156-2, in press.

[4] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on a square with one and two curved sides, Studia Univ. Babes–Bolyai Math., 55(2010), no. 3, 51-67.

[5] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on triangle with all curved sides, Appl. Math. Comput., 218(2011), 3072-3082.

[6] G. Coman, T. Catinas, Interpolation operators on a triangle with one curved side, BIT Numerical Mathematics, 50(2010), no. 2, 243-267.

[7] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.

[8] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24(2011), no. 12, 2068-2071.

[9] I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approximation Theory, 163(2011), no. 9, 1076-1079.

[10] H. Gonska, D. Kacso, P. Pitul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.

[11] H. Gonska, P. Pitul, I. Rasa,  Over-iterates of Bernstein-Stancu operators, Calcolo, 44(2007), 117-125.

[12] H. Gonska, I. Rasa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), no. 1-2, 119-130.

[13] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approximation Theory 3(1970), 310-339.

[14] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.

[15] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, 2001.

[16] I.A. Rus, Iterates of Stancu operators, via contraction principle, Studia Univ. Babes-Bolyai Math., 47(2002), no. 4, 101-104.

[17] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.

[18] I.A. Rus, Fixed point and interpolation point set of a positive linear operator on C(D), Studia Univ. Babes–Bolyai Math., 55(2010), no. 4, 243-248.

Fixed Point Theory, 14(2013), No.1, …-…

http://www.math.ubbcluj.ro/nodeacj/sfptcj.html

Iterates of Bernstein type operators on a square with one curved side via contraction principle

Teodora Cătinaş and Diana Otrocol∗∗

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania
E-mail: tcatinas@math.ubbcluj.ro
∗∗Tiberiu Popoviciu Institute of Numerical Analysis of Romanian Academy,
Cluj-Napoca, Romania
E-mail: dotrocol@ictp.acad.ro

Abstract. Given a function defined on a square with one curved side, we consider some Bernstein-type operators as well as their product and Boolean sum. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.

Key Words and Phrases: Square with curved side, Bernstein operators, contraction principle, weakly Picard operators.

2000 Mathematics Subject Classification: 41A36, 41A25, 39B12, 47H10.

1. Weakly Picard operators

We recall some results regarding weakly Picard operators that will be used in the sequel (see, e.g., [15]).

Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. We denote by

FA\displaystyle F_{A} :={xX|A(x)=x}-the fixed point set of A;\displaystyle:=\{x\in X~|~A(x)=x\}\text{-the fixed point set of }A\text{;}
I(A)\displaystyle I(A) :={YX|A(Y)Y,Y}-the family of the nonempty invariant\displaystyle:=\{Y\subset X~|~A(Y)\subset Y,\ Y\neq\emptyset\}\text{-the family of the nonempty invariant }
subset of A\displaystyle\text{subset of }A
A0\displaystyle A^{0} :=1X,A1:=A,,An+1:=AAn,n.\displaystyle:=1_{X},\ A^{1}:=A,\ ...,\ A^{n+1}:=A\circ A^{n},\ \ n\in\mathbb{N}\text{.}
Definition 1.1.

The operator A:XXA:X\rightarrow X is a Picard operator if there exists xXx^{\ast}\in X such that:

(i) FA={x};F_{A}=\{x^{*}\};

(ii) the sequence (An(x0))n(A^{n}(x_{0}))_{n\in\mathbb{N}} converges to xx^{*} for all x0Xx_{0}\in X.

Definition 1.2.

The operator AA is a weakly Picard operator if the sequence (An(x))n(A^{n}(x))_{n\in\mathbb{N}} converges, for all xXx\in X, and the limit (which may depend on xx) is a fixed point of AA.

Definition 1.3.

If AA is weakly Picard operator then we consider the operator A,A:XXA^{\infty},\;A^{\infty}:X\rightarrow X, defined by

A(x):=limnAn(x).A^{\infty}(x):=\underset{n\rightarrow\infty}A^{n}(x).
Theorem 1.4.

[15] An operator AA is a weakly Picard operator if and only if there exists a partition of X,X, X=λΛXλ,X={\textstyle\bigcup\limits_{\lambda\in\Lambda}}X_{\lambda}, such that

  • (a)

    XλI(A),X_{\lambda}\in I(A), λΛ;\forall\lambda\in\Lambda;

  • (b)

    A|Xλ:XλXλ\left.A\right|_{X_{\lambda}}:X_{\lambda}\rightarrow X_{\lambda} is a Picard operator, λΛ.\forall\lambda\in\Lambda.

2. Bernstein type operators on a square with one curved side

In [4] there are introduced some Bernstein-type operators on a square with one curved side. In [3], [5] and [6] there have been introduced interpolation and Berstein-type operators on triangles with some curved sides.

Given h>0,h>0, let DhD_{h} be the square with one curved side having the vertices V1=(0,0),V_{1}=(0,0), V2=(h,0),V_{2}=(h,0), V3=(h,h)V_{3}=(h,h) and V4=(0,h),V_{4}=(0,h), three straight sides Γ1,\Gamma_{1}, Γ2,\Gamma_{2}, along the coordinate axes and Γ3\Gamma_{3} parallel to axis Ox,Ox, and the curved side Γ4\Gamma_{4} which is defined by the function gg, such that g(h)=g(0)=hg(h)=g(0)=h (see Figure 1).

[Uncaptioned image]

Figure 1. The square Dh.D_{h}.

Let FF be a real-valued function defined on DhD_{h} and (0,y)(0,y), (g(y),y),(g(y),y), respectively, (x,0),(x,0), (x,h)(x,h) be the points in which the parallel lines to the coordinate axes, passing through the point (x,y)Dh,(x,y)\in D_{h}, intersect the sides Γ2,\Gamma_{2}, Γ4,\Gamma_{4}, respectively Γ1\Gamma_{1} and Γ3.\Gamma_{3}. We consider the uniform partitions of the intervals [0,g(y)][0,g(y)] and [0,h][0,h], y[0,h],y\in[0,h], Δmx={img(y)|i=0,m¯}\Delta_{m}^{x}=\left\{\left.\tfrac{i}{m}g(y)\right|\ i=\overline{0,m}\right\} and Δny={jnh|j=0,n¯}\Delta_{n}^{y}=\left\{\left.\tfrac{j}{n}h\right|\ j=\overline{0,n}\right\} and the Bernstein-type operators BmxB_{m}^{x} and BnyB_{n}^{y} defined by

(BmxF)(x,y)=i=0mpm,i(x,y)F(img(y),y),\left(B_{m}^{x}F\right)\left(x,y\right)=\sum_{i=0}^{m}p_{m,i}\left(x,y\right)F\left(\tfrac{i}{m}g(y),y\right), (1)

with

pm,i(x,y)=(mi)[xg(y)]i[1xg(y)]mi,p_{m,i}\left(x,y\right)=\binom{m}{i}\left[\tfrac{x}{g(y)}\right]^{i}\left[1-\tfrac{x}{g(y)}\right]^{m-i},

respectively,

(BnyF)(x,y)=j=0nqn,j(x,y)F(x,jnh)\left(B_{n}^{y}F\right)\left(x,y\right)=\sum_{j=0}^{n}q_{n,j}\left(x,y\right)F\left(x,\tfrac{j}{n}h\right) (2)

with

qn,j(x,y)=(nj)(yh)j(1yh)nj.q_{n,j}\left(x,y\right)=\binom{n}{j}\left(\tfrac{y}{h}\right)^{j}\left(1-\tfrac{y}{h}\right)^{n-j}.
Theorem 2.1.

[4] If FF is a real-valued function defined on DhD_{h}\ then we have

  1. (1)

    BmxF=FB_{m}^{x}F=F\ on Γ2Γ4;\Gamma_{2}\cup\Gamma_{4};

    BnyF=FB_{n}^{y}F=F\ on Γ1Γ3,\Gamma_{1}\cup\Gamma_{3},

  2. (2)

    (Bmxeij)(x,y)=xiyj,i=0,1;\left(B_{m}^{x}e_{ij}\right)\left(x,y\right)=x^{i}y^{j},\ \ i=0,1; j;j\in\mathbb{N};

    (Bnyeij)(x,y)=xiyj,\left(B_{n}^{y}e_{ij}\right)\left(x,y\right)=x^{i}y^{j},\ i;i\in\mathbb{N}; j=0,1.j=0,1.

Remark 2.2.

The interpolation properties of BmxFB_{m}^{x}F and BnyFB_{n}^{y}F are illustrated in Figures 2 and 3. The bold sides indicate the interpolation sets.

[Uncaptioned image]

Figure 2. Interpolation domain for BmxF.B_{m}^{x}F.

[Uncaptioned image]

Figure 3. Interpolation domain for BynF.B_{y}^{n}F.

Let Pmn=BmxBny,P_{mn}=B_{m}^{x}B_{n}^{y}, respectively, Qnm=BnyBmxQ_{nm}=B_{n}^{y}B_{m}^{x} be the products of the operators BmxB_{m}^{x} and Bny.B_{n}^{y}. We have

(PmnF)(x,y)=i=0mj=0npm,i(x,y)qn,j(ig(y)m,y)F(ig(y)m,jhn),\left(P_{mn}F\right)\left(x,y\right)\!=\!\sum_{i=0}^{m}\sum_{j=0}^{n}p_{m,i}\left(x,y\right)q_{n,j}\left(i\tfrac{g(y)}{m},y\right)F\Big(i\tfrac{g(y)}{m},j\tfrac{h}{n}\Big), (3)

respectively,

(QnmF)(x,y)=i=0mj=0npm,i(x,jhn)qn,j(x,y)F(img(jhn),jhn).\left(Q_{nm}F\right)\left(x,y\right)\!=\!\sum_{i=0}^{m}\sum_{j=0}^{n}p_{m,i}\left(x,j\tfrac{h}{n}\right)q_{n,j}\left(x,y\right)F\Big(\tfrac{i}{m}g(j\tfrac{h}{n}),j\tfrac{h}{n}\Big). (4)
Theorem 2.3.

[4] If FF is a real-valued function defined on DhD_{h} then:

  1. (1)

    (PmnF)(Vi)=F(Vi),i=1,,4;(P_{mn}F)(V_{i})=F(V_{i}),\ \ \ \ i=1,...,4;

    (QnmF)(Vi)=F(Vi),i=1,,4.(Q_{nm}F)(V_{i})=F(V_{i}),\ \ \ \ i=1,...,4.

  2. (2)

    (Pmneij)(x,y)=xiyj,i=0,1;\left(P_{mn}e_{ij}\right)\left(x,y\right)=x^{i}y^{j},\ \ i=0,1; j=0,1;j=0,1;

    (Qnmeij)(x,y)=xiyj,\left(Q_{nm}e_{ij}\right)\left(x,y\right)=x^{i}y^{j},\ i=0,1;i=0,1; j=0,1.j=0,1.

We consider the Boolean sums of the operators BmxB_{m}^{x} and Bny,B_{n}^{y}, i.e.,

Smn:=BmxBny=Bmx+BnyBmxBny,S_{mn}:=B_{m}^{x}\oplus B_{n}^{y}=B_{m}^{x}+B_{n}^{y}-B_{m}^{x}B_{n}^{y}, (5)

respectively,

Tnm:=BnyBmx=Bny+BmxBnyBmx.T_{nm}:=B_{n}^{y}\oplus B_{m}^{x}=B_{n}^{y}+B_{m}^{x}-B_{n}^{y}B_{m}^{x}. (6)

3. Iterates of Bernstein type operators

Let FF be a real-valued function defined on DhD_{h}, h+.h\in\mathbb{R}_{+}.

Using the weakly Picard operators technique and the contraction principle, we obtain the following results regarding the convergence of the iterates of the Bernstein-type operators (1) and (2) and of their product and Boolean sum operators (3), (4), (5) and (6). The same approach for some other linear and positive operators lead to similar results in [1], [2], [16], [17] and [18].

The limit behavior for the iterates of some classes of positive linear operators were also studied, for example, in [14], [13], [7], [8], [9], [10], [11], [12].

Theorem 3.1.

The operators BmxB_{m}^{x} and BnyB_{n}^{y} are weakly Picard operators and

(Bmx,F)(x,y)\displaystyle\left(B_{m}^{x,\infty}F\right)\left(x,y\right) =F(0,y)+F(g(y),y)F(0,y)g(y)x,\displaystyle=F\left(0,y\right)+\frac{F(g(y),y)-F(0,y)}{g(y)}x, (7)
(Bny,F)(x,y)\displaystyle\left(B_{n}^{y,\infty}F\right)\left(x,y\right) =F(x,0)+F(x,h)F(x,0)hy.\displaystyle=F\left(x,0\right)+\frac{F(x,h)-F(x,0)}{h}y. (8)
Proof.

Taking into account the interpolation properties, from Theorem 2.1, of BmxB_{m}^{x} and Bny,B_{n}^{y}, let

Xφ|Γ2,φ|Γ4(1)\displaystyle X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)} ={FC(Dh)|F(0,y)=φ|Γ2,F(g(y),y)=φ|Γ4},for y[0,h],\displaystyle=\{F\in C(D_{h})\ |\ F(0,y)=\left.\varphi\right|_{\Gamma_{2}},\ F(g(y),y)=\left.\varphi\right|_{\Gamma_{4}}\},\ \ \text{for }y\in[0,h],
Xψ|Γ1,ψ|Γ3(2)\displaystyle X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)} ={FC(Dh)|F(x,0)=ψ|Γ1,F(x,h)=ψ|Γ3},for x[0,h],\displaystyle=\{F\in C(D_{h})\ |\ F(x,0)=\left.\psi\right|_{\Gamma_{1}},\ F(x,h)=\left.\psi\right|_{\Gamma_{3}}\},\ \ \text{for }x\in[0,h],

and denote by

Fφ|Γ2,φ|Γ4(1)(x,y)\displaystyle F_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}(x,y) :=φ|Γ2+φ|Γ4φ|Γ2g(y)x,\displaystyle:=\left.\varphi\right|_{\Gamma_{2}}+\frac{\left.\varphi\right|_{\Gamma_{4}}-\left.\varphi\right|_{\Gamma_{2}}}{g(y)}x,
Fψ|Γ1,ψ|Γ3(2)(x,y)\displaystyle F_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}(x,y) :=ψ|Γ1+ψ|Γ3ψ|Γ1hy,\displaystyle:=\left.\psi\right|_{\Gamma_{1}}+\frac{\left.\psi\right|_{\Gamma_{3}}-\left.\psi\right|_{\Gamma_{1}}}{h}y,

with φ,ψC(Dh).\varphi,\psi\in C\mathbb{(}D_{h}).

We have the following properties:

  • (i)

    Xφ|Γ2,φ|Γ4(1)X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)} and Xψ|Γ1,ψ|Γ3(2)X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)} are closed subsets of C(Dh)C(D_{h});

  • (ii)

    Xφ|Γ2,φ|Γ4(1)X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)} is an invariant subset of BmxB_{m}^{x} and Xψ|Γ1,ψ|Γ3(2)X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)} is an invariant subset of BnyB_{n}^{y}, for φ,ψC(Dh)\varphi,\psi\in C\mathbb{(}D_{h}) and n,m;n,m\in\mathbb{N}^{\ast};

  • (iii)

    C(Dh)=φC(Dh)Xφ|Γ2,φ|Γ4(1)C(D_{h})=\underset{\varphi\in C\mathbb{(}D_{h})}{\cup}X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)} and C(Dh)=ψC(Dh)Xψ|Γ1,ψ|Γ3(2)C(D_{h})=\underset{\psi\in C\mathbb{(}D_{h})}{\cup}X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)} are partitions of C(Dh)C(D_{h});

  • (iv)

    Fφ|Γ2,φ|Γ4(1)Xφ|Γ2,φ|Γ4(1)FBmxF_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}\in X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}\cap F_{B_{m}^{x}} and Fψ|Γ1,ψ|Γ3(2)Xψ|Γ1,ψ|Γ3(2)FBny,F_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}\in X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}\cap F_{B_{n}^{y}}, where FBmxF_{B_{m}^{x}} and FBnyF_{B_{n}^{y}} denote the fixed points sets of BmxB_{m}^{x} and Bny.B_{n}^{y}.

The statements (i)(i) and (iii)(iii) are obvious.

(ii)(ii) By linearity of Bernstein operators and Theorem 2.1, it follows that Fφ|Γ2,φ|Γ4(1)Xφ|Γ2,φ|Γ4(1)\forall F_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}\in X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)} and Fψ|Γ1,ψ|Γ3(2)Xψ|Γ1,ψ|Γ3(2)\forall F_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}\in X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)} we have

BmxFφ|Γ2,φ|Γ4(1)(x,y)\displaystyle B_{m}^{x}F_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}(x,y) =Fφ|Γ2,φ|Γ4(1)(x,y),\displaystyle=F_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}(x,y),
BnyFψ|Γ1,ψ|Γ3(2)(x,y)\displaystyle B_{n}^{y}F_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}(x,y) =Fψ|Γ1,ψ|Γ3(2)(x,y).\displaystyle=F_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}(x,y).

So, Xφ|Γ2,φ|Γ4(1)X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)} and Xψ|Γ1,ψ|Γ3(2)X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)} are invariant subsets of BmxB_{m}^{x} and, respectively, of Bny,B_{n}^{y},\ for φ,ψC(Dh)\varphi,\psi\in C\mathbb{(}D_{h}) and n,m;n,m\in\mathbb{N}^{\ast};

(iv)(iv) We prove that

Bmx|Xφ|Γ2,φ|Γ4(1):Xφ|Γ2,φ|Γ4(1)Xφ|Γ2,φ|Γ4(1) and Bny|Xψ|Γ1,ψ|Γ3(2):Xψ|Γ1,ψ|Γ3(2)Xψ|Γ1,ψ|Γ3(2)\left.B_{m}^{x}\right|_{X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}}\!:\!X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}\!\rightarrow X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}\text{ and }\left.B_{n}^{y}\right|_{X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}}\!:\!X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}\!\rightarrow X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}

are contractions for φ,ψC(Dh)\varphi,\psi\in C\mathbb{(}D_{h}) and n,m.n,m\in\mathbb{N}^{\ast}.

Let F,GXφ|Γ2,φ|Γ4(1)F,G\in X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}. From (1) we have

|Bmx(F)(x,y)Bmx(G)(x,y)|=|Bmx(FG)(x,y)|\displaystyle\left|B_{m}^{x}(F)(x,y)-B_{m}^{x}(G)(x,y)\right|=\left|B_{m}^{x}(F-G)(x,y)\right|\leq
|1(1xg(y))m(xg(y))m|FG\displaystyle\leq\left|1-\left(1-\frac{x}{g(y)}\right)^{m}-\left(\frac{x}{g(y)}\right)^{m}\right|\cdot\left\|F-G\right\|_{\infty}\leq
(112m1)FG,\displaystyle\leq\left(1-\frac{1}{2^{m-1}}\right)\left\|F-G\right\|_{\infty},

where \left\|\cdot\right\|_{\infty} denotes the Chebyshev norm. So,

Bmx(F)(x,y)Bmx(G)(x,y)(112m1)FG,F,GXφ|Γ2,φ|Γ4(1),\left\|B_{m}^{x}(F)(x,y)-B_{m}^{x}(G)(x,y)\right\|_{\infty}\leq\left(1-\frac{1}{2^{m-1}}\right)\left\|F-G\right\|_{\infty},\forall F,G\in X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)},

i.e., Bmx|Xφ|Γ2,φ|Γ4(1)\left.B_{m}^{x}\right|_{X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}} is a contraction for φC(Dh)\varphi\in C\mathbb{(}D_{h}).

Analogously we have

Bny(F)(x,y)Bny(G)(x,y)(112n1)FG, F,GXψ|Γ1,ψ|Γ3(2),\left\|B_{n}^{y}(F)(x,y)-B_{n}^{y}(G)(x,y)\right\|_{\infty}\leq\left(1-\frac{1}{2^{n-1}}\right)\left\|F-G\right\|_{\infty},\text{\ }\forall F,G\in X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)},

i.e., Bny|Xψ|Γ1,ψ|Γ3(2)\left.B_{n}^{y}\right|_{X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}} is a contraction for ψC(Dh).\psi\in C\mathbb{(}D_{h}).

On the other hand, φ|Γ2+φ|Γ4φ|Γ2g(y)()Xφ|Γ2,φ|Γ4(1),\left.\varphi\right|_{\Gamma_{2}}+\frac{\left.\varphi\right|_{\Gamma_{4}}-\left.\varphi\right|_{\Gamma_{2}}}{g(y)}(\cdot)\in X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}, ψ|Γ1+ψ|Γ3ψ|Γ1h()Xψ|Γ1,ψ|Γ3(2)\left.\psi\right|_{\Gamma_{1}}+\frac{\left.\psi\right|_{\Gamma_{3}}-\left.\psi\right|_{\Gamma_{1}}}{h}(\cdot)\in X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)} are fixed points of BmxB_{m}^{x} and BnyB_{n}^{y}, i.e.,

Bmx(φ|Γ2+φ|Γ4φ|Γ2g(y)())\displaystyle B_{m}^{x}(\left.\varphi\right|_{\Gamma_{2}}+\frac{\left.\varphi\right|_{\Gamma_{4}}-\left.\varphi\right|_{\Gamma_{2}}}{g(y)}(\cdot)) =φ|Γ2+φ|Γ4φ|Γ2g(y)(),\displaystyle=\left.\varphi\right|_{\Gamma_{2}}+\frac{\left.\varphi\right|_{\Gamma_{4}}-\left.\varphi\right|_{\Gamma_{2}}}{g(y)}(\cdot),
Bny(ψ|Γ1+ψ|Γ3ψ|Γ1h())\displaystyle B_{n}^{y}(\left.\psi\right|_{\Gamma_{1}}+\frac{\left.\psi\right|_{\Gamma_{3}}-\left.\psi\right|_{\Gamma_{1}}}{h}(\cdot)) =ψ|Γ1+ψ|Γ3ψ|Γ1h().\displaystyle=\left.\psi\right|_{\Gamma_{1}}+\frac{\left.\psi\right|_{\Gamma_{3}}-\left.\psi\right|_{\Gamma_{1}}}{h}(\cdot).

From the contraction principle, Fφ|Γ2,φ|Γ4(1)(x,y):=φ|Γ2+φ|Γ4φ|Γ2g(y)xF_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}(x,y):=\left.\varphi\right|_{\Gamma_{2}}+\frac{\left.\varphi\right|_{\Gamma_{4}}-\left.\varphi\right|_{\Gamma_{2}}}{g(y)}x is the unique fixed point of BmxB_{m}^{x} in Xφ|Γ2,φ|Γ4(1)X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)} and Bmx|Xφ|Γ2,φ|Γ4(1)\left.B_{m}^{x}\right|_{X_{\left.\varphi\right|_{\Gamma_{2}},\left.\varphi\right|_{\Gamma_{4}}}^{(1)}} is a Picard operator, with

(Bmx,F)(x,y)=F(0,y)+F(g(y),y)F(0,y)g(y)x,\left(B_{m}^{x,\infty}F\right)\left(x,y\right)=F\left(0,y\right)+\frac{F(g(y),y)-F(0,y)}{g(y)}x,

and, similarly, Fψ|Γ1,ψ|Γ3(2)(x,y):=ψ|Γ1+ψ|Γ3ψ|Γ1hyF_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}(x,y):=\left.\psi\right|_{\Gamma_{1}}+\frac{\left.\psi\right|_{\Gamma_{3}}-\left.\psi\right|_{\Gamma_{1}}}{h}y is the unique fixed point of BnyB_{n}^{y} in Xψ|Γ1,ψ|Γ3(2)X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)} and Bny|Xψ|Γ1,ψ|Γ3(2)\left.B_{n}^{y}\right|_{X_{\left.\psi\right|_{\Gamma_{1}},\left.\psi\right|_{\Gamma_{3}}}^{(2)}} is a Picard operator, with

(Bny,F)(x,y)=F(x,0)+F(x,h)F(x,0)hy,\left(B_{n}^{y,\infty}F\right)\left(x,y\right)=F\left(x,0\right)+\frac{F(x,h)-F(x,0)}{h}y,

Consequently, taking into account (ii)(ii), by Theorem 1.4 it follows that the operators BmxB_{m}^{x} and BnyB_{n}^{y} are weakly Picard operators. ∎

Theorem 3.2.

The operators PmnP_{mn} and QnmQ_{nm} are weakly Picard operators and

(PmnF)(x,y)\displaystyle\left(P_{mn}^{\infty}F\right)\left(x,y\right) =F(0,0)+F(h,0)F(0,0)g(y)x+F(0,h)F(0,0)hy\displaystyle=F\left(0,0\right)+\frac{F(h,0)-F(0,0)}{g(y)}x+\frac{F(0,h)-F(0,0)}{h}y (9)
+F(0,0)F(0,h)F(h,0)+F(h,h)g(y)hxy,\displaystyle\quad+\frac{F(0,0)-F(0,h)-F(h,0)+F(h,h)}{g(y)h}xy,
(QnmF)(x,y)\displaystyle\left(Q_{nm}^{\infty}F\right)\left(x,y\right) =F(0,0)+F(h,0)F(0,0)g(y)x+F(0,h)F(0,0)hy\displaystyle=F\left(0,0\right)+\frac{F(h,0)-F(0,0)}{g(y)}x+\frac{F(0,h)-F(0,0)}{h}y (10)
+F(0,0)F(0,h)F(h,0)+F(h,h)g(y)hxy.\displaystyle\quad+\frac{F(0,0)-F(0,h)-F(h,0)+F(h,h)}{g(y)h}xy.
Proof.

Let

Xα,β,γ,δ={FC(Dh)|F(0,0)=α,F(0,h)=β,F(h,h)=γ,F(h,0)=δ}X_{\alpha,\beta,\gamma,\delta}=\{F\in C(D_{h})\ |\ F(0,0)=\alpha,\ F(0,h)=\beta,F(h,h)=\gamma,F(h,0)=\delta\}

and denote by

Fα,β,γ,δ(x,y):=α+δαg(y)x+βαhy+αβδ+γg(y)hxyF_{\alpha,\beta,\gamma,\delta}(x,y):=\alpha+\frac{\delta-\alpha}{g(y)}x+\frac{\beta-\alpha}{h}y+\frac{\alpha-\beta-\delta+\gamma}{g(y)h}xy

with α,β,γ,δ.\alpha,\beta,\gamma,\delta\in\mathbb{R}.

We remark that

  • (i)

    Xα,β,γ,δX_{\alpha,\beta,\gamma,\delta} is closed subset of C(Dh)C(D_{h});

  • (ii)

    Xα,β,γ,δX_{\alpha,\beta,\gamma,\delta} is an invariant subset of PmnP_{mn} and QnmQ_{nm}, for α,β,γ,δ\alpha,\beta,\gamma,\delta\in\mathbb{R} and n,m;n,m\in\mathbb{N}^{\ast};

  • (iii)

    C(Dh)=α,β,γ,δXα,β,γ,δC(D_{h})=\underset{\alpha,\beta,\gamma,\delta}{\cup}X_{\alpha,\beta,\gamma,\delta} is a partition of C(Dh)C(D_{h});

  • (iv)

    Fα,β,γ,δXα,β,γ,δFPmnF_{\alpha,\beta,\gamma,\delta}\in X_{\alpha,\beta,\gamma,\delta}\cap F_{P_{mn}} and Fα,β,γ,δXα,β,γ,δFQnm,F_{\alpha,\beta,\gamma,\delta}\in X_{\alpha,\beta,\gamma,\delta}\cap F_{Q_{nm}}, where FPmnF_{P_{mn}} and FQnmF_{Q_{nm}} denote the fixed points sets of PmnP_{mn} and Qnm.Q_{nm}.

The statements (i)(i) and (iii)(iii) are obvious.

(ii)(ii) Similarly with the proof of Theorem 3.1, by linearity of Bernstein operators and Theorem 2.3, it follows that Xα,β,γ,δX_{\alpha,\beta,\gamma,\delta} is an invariant subset of PmnP_{mn} and, respectively, of QnmQ_{nm}, for α,β,γ,δ\alpha,\beta,\gamma,\delta\in\mathbb{R} and n,m;n,m\in\mathbb{N}^{\ast};

(iv)(iv) We prove that

Pmn|Xα,β,γ,δ:Xα,β,γ,δXα,β,γ,δ and Qnm|Xα,β,γ,δ:Xα,β,γ,δXα,β,γ,δ\left.P_{mn}\right|_{X_{\alpha,\beta,\gamma,\delta}}:X_{\alpha,\beta,\gamma,\delta}\rightarrow X_{\alpha,\beta,\gamma,\delta}\text{ and }\left.Q_{nm}\right|_{X_{\alpha,\beta,\gamma,\delta}}:X_{\alpha,\beta,\gamma,\delta}\rightarrow X_{\alpha,\beta,\gamma,\delta}

are contractions for α,β,γ,δ\alpha,\beta,\gamma,\delta\in\mathbb{R} and n,m.n,m\in\mathbb{N}^{\ast}. Let F,GXα,β,γ,δF,G\in X_{\alpha,\beta,\gamma,\delta}. From [2, Lemma 8] it follows that

|Pmn(F)(x,y)Pmn(G)(x,y)|=|Pmn(FG)(x,y)|\displaystyle\left|P_{mn}(F)(x,y)-P_{mn}(G)(x,y)\right|=\left|P_{mn}(F-G)(x,y)\right|\leq
(112m+n2)FG.\displaystyle\leq\left(1-\frac{1}{2^{m+n-2}}\right)\left\|F-G\right\|_{\infty}.

So,

Pmn(F)(x,y)Pmn(G)(x,y)(112m+n2)FG,F,GXα,β,γ,δ,\left\|P_{mn}(F)(x,y)-P_{mn}(G)(x,y)\right\|_{\infty}\leq\left(1-\frac{1}{2^{m+n-2}}\right)\left\|F-G\right\|_{\infty},\forall F,G\in X_{\alpha,\beta,\gamma,\delta},

i.e., Pmn|Xα,β,γ,δ\left.P_{mn}\right|_{X_{\alpha,\beta,\gamma,\delta}} is a contraction for α,β,γ,δ.\alpha,\beta,\gamma,\delta\in\mathbb{R}. Analogously, we have

Qnm(F)(x,y)Qnm(G)(x,y)(112m+n2)FG, F,GXα,β,γ,δ,\left\|Q_{nm}(F)(x,y)-Q_{nm}(G)(x,y)\right\|_{\infty}\leq\left(1-\frac{1}{2^{m+n-2}}\right)\left\|F-G\right\|_{\infty},\text{\ }\forall F,G\in X_{\alpha,\beta,\gamma,\delta},

i.e., Qnm|Xα,β,γ,δ\left.Q_{nm}\right|_{X_{\alpha,\beta,\gamma,\delta}} is a contraction for α,β,γ,δ\alpha,\beta,\gamma,\delta\in\mathbb{R}.

We have that

Fα,β,γ,δ(x,y):=α+δαg(y)x+βαhy+αβδ+γg(y)hxyF_{\alpha,\beta,\gamma,\delta}(x,y):=\alpha+\frac{\delta-\alpha}{g(y)}x+\frac{\beta-\alpha}{h}y+\frac{\alpha-\beta-\delta+\gamma}{g(y)h}xy

and

Pmn\displaystyle P_{mn} (α+δαg(y)x+βαhy+αβδ+γg(y)hxy)\displaystyle\left(\alpha+\frac{\delta-\alpha}{g(y)}x+\frac{\beta-\alpha}{h}y+\frac{\alpha-\beta-\delta+\gamma}{g(y)h}xy\right)
=α+δαg(y)x+βαhy+αβδ+γg(y)hxy,\displaystyle=\alpha+\frac{\delta-\alpha}{g(y)}x+\frac{\beta-\alpha}{h}y+\frac{\alpha-\beta-\delta+\gamma}{g(y)h}xy,
Qnm\displaystyle Q_{nm} (α+δαg(y)x+βαhy+αβδ+γg(y)hxy)\displaystyle\left(\alpha+\frac{\delta-\alpha}{g(y)}x+\frac{\beta-\alpha}{h}y+\frac{\alpha-\beta-\delta+\gamma}{g(y)h}xy\right)
=α+δαg(y)x+βαhy+αβδ+γg(y)hxy.\displaystyle=\alpha+\frac{\delta-\alpha}{g(y)}x+\frac{\beta-\alpha}{h}y+\frac{\alpha-\beta-\delta+\gamma}{g(y)h}xy.

From the contraction principle we have that Fα,β,γ,δF_{\alpha,\beta,\gamma,\delta} is the unique fixed point of PmnP_{mn} in Xα,β,γ,δX_{\alpha,\beta,\gamma,\delta} and Pmn|Xα,β,γ,δ\left.P_{mn}\right|_{X_{\alpha,\beta,\gamma,\delta}} is a Picard operator and, respectively, Fα,β,γ,δF_{\alpha,\beta,\gamma,\delta} is the unique fixed point of QnmQ_{nm} in Xα,β,γ,δX_{\alpha,\beta,\gamma,\delta} and Qnm|Xα,β,γ,δ\left.Q_{nm}\right|_{X_{\alpha,\beta,\gamma,\delta}} is a Picard operator, so (9) and (10) hold. Consequently, taking into account (ii)(ii), by Theorem 1.4 it follows that the operators PmnP_{mn} and QnmQ_{nm} are weakly Picard operators. ∎

Theorem 3.3.

The operator SmnS_{mn} is weakly Picard operator and

(SmnF)(x,y)\displaystyle\left(S_{mn}^{\infty}F\right)\left(x,y\right) =F(0,y)+F(x,0)F(0,0)\displaystyle=F\left(0,y\right)+F\left(x,0\right)-F\left(0,0\right)
+F(g(y),y)F(0,y)F(h,0)+F(0,0)g(y)x\displaystyle+\frac{F(g(y),y)-F(0,y)-F(h,0)+F(0,0)}{g(y)}x
+F(x,h)F(x,0)F(0,h)+F(0,0)hy\displaystyle+\frac{F(x,h)-F(x,0)-F(0,h)+F(0,0)}{h}y
F(0,0)F(0,h)F(h,0)+F(h,h)g(y)hxy.\displaystyle-\frac{F(0,0)-F(0,h)-F(h,0)+F(h,h)}{g(y)h}xy.
Proof.

The proof follows the same steps as in the previous theorems but using the following inequality

Smn(F)(x,y)Smn(G)(x,y)[1(12m1+12n112m+n2)]FG,\left\|S_{mn}(F)(x,y)-S_{mn}(G)(x,y)\right\|_{\infty}\leq\left[1-\left(\frac{1}{2^{m-1}}+\frac{1}{2^{n-1}}-\frac{1}{2^{m+n-2}}\right)\right]\left\|F-G\right\|_{\infty},

in order to prove that SmnS_{mn} is a contraction. ∎

Remark 3.4.

We have an analogous result for the operator TnmT_{nm}.

Acknowledgement The authors are grateful to professor I. A. Rus for his helpful comments and suggestions.

References

  • [1] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline, 44(2003), 555-563.
  • [2] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8(2)(2003), 159-168.
  • [3] P. Blaga, T. Cătinaş, G. Coman, Bernstein-type operators on triangle with one curved side, Mediterr. J. Math., 10(2013), 10.1007/s00009-011-0156-2, in press.
  • [4] P. Blaga, T. Cătinaş, G. Coman, Bernstein-type operators on a square with one and two curved sides, Studia Univ. Babeş–Bolyai Math., 55(2010), No. 3, 51-67.
  • [5] P. Blaga, T. Cătinaş, G. Coman, Bernstein-type operators on triangle with all curved sides, Appl. Math. Comput., 218(2011), 3072-3082.
  • [6] G. Coman, T. Cătinaş, Interpolation operators on a triangle with one curved side, BIT Numerical Mathematics, 50(2010), No. 2, 243-267.
  • [7] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.
  • [8] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24(2011), No. 12, 2068-2071.
  • [9] I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approximation Theory, 163(2011), No. 9, 1076-1079.
  • [10] H. Gonska, D. Kacsó, P. Piţul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.
  • [11] H. Gonska, P. Piţul, I. Raşa Over-iterates of Bernstein-Stancu operators, Calcolo, 44(2007), 117-125.
  • [12] H. Gonska, I. Raşa The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), No. 1-2, 119-130.
  • [13] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approximation Theory 3(1970), 310-339.
  • [14] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.
  • [15] I.A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001.
  • [16] I.A. Rus, Iterates of Stancu operators, via contraction principle, Studia Univ. Babeş–Bolyai Math., 47(2002), No. 4, 101-104.
  • [17] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.
  • [18] I.A. Rus, Fixed point and interpolation point set of a positive linear operator on C(D¯)C(\overline{D}), Studia Univ. Babeş–Bolyai Math., 55(2010), No. 4, 243-248.

Related Posts

Ulam stability for a delay differential equation

AbstractWe study the Ulam–Hyers stability and generalized Ulam–Hyers–Rassias stability for a delay differential equation. Some examples are given. AuthorsD. Otrocol (Tiberiu…