Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Convergence order

Convergence order (order of convergence)

The convergence order (the order of convergence or convergence rate) are notions for measuring the convergence speed of convergent sequences   x_k \rightarrow x^\ast\in X.

Usually, the higher the order, the faster the speed, but there are some notable exceptions. One expects that the fastest speed is achieved by the infinite order, but this is not always true: one may find sequences with no order or sequences with strict superlinear order, which which are term by term faster than some sequences with infinite order (see [Catinas, 2021] or [Catinas, 2023]).

The first survey paper on convergence orders was recently published, in [Catinas, 2019].

The convergence orders are defined using the errors x^\ast – x_k . For simplicity, let X={\mathbb R} and let e_k: = |x^\ast – x_k| .

For a given p\geq 1, let Q_p(k)=\frac{e_{k+1}}{{e_k}^p}, k\geq 1 denote the quotient convergence factors.

High convergence orders p_0>1

Three main classes exist, C (classic), Q (quotient) and R (root) convergence orders:

Classical order p_0>1

when

\lim \limits_{k\rightarrow \infty} Q_{p_0}(k)=Q_{p_0}\in(0,\infty) \qquad {\rm i.e.,}\ \lim\limits_{k\rightarrow \infty}\textstyle\frac{e_{k+1}}{e_k ^{p_0}}=\lim\limits_{k\rightarrow \infty}\frac{| x^\ast – x_{k+1}|}{| x^\ast – x_k |^{p_0}}=Q_{p_0}\in(0,\infty),


Q-order p_0>1

when

\begin{equation}\tag{$Q_L$}\label{def Q_L} \lim\limits_{k\rightarrow \infty} \frac{\ln e_{k+1}}{\ln e_k}=p_0 \end{equation}

\Leftrightarrow

\begin{equation}\tag{$Q_\Lambda$}\label{def Q_Lam} \lim\limits_{k\rightarrow \infty} \frac{\ln \frac{e_{k+2}}{e_{k+1}}}{\ln \frac{e_{k+1}}{e_k}}=p_0. \end{equation}

\Leftrightarrow
\begin{equation}\tag{$Q_Q$}\label{def Q_Q} \begin{cases} \lim\limits_{k\rightarrow \infty} Q_p(k)=0, & 1 \leq p < p_0 \\ \lim\limits_{k\rightarrow \infty} Q_p(k)=\infty, & p_0 < p \end{cases} \end{equation} \Leftrightarrow \forall \varepsilon>0,  \exists A,B\geq 0, \ k_0 \geq 0 s.t.
\begin{equation}\tag{$Q_\varepsilon$}\label{f. def Q_eps} A\cdot e_k ^{p_{0}+\varepsilon}\leq e_{k+1} \leq B\cdot e_k^{p_{0}-\varepsilon},\  \; \; \forall k\geq k_0 \end{equation}


R-order p_0>1

when

\begin{equation}\tag{$R_R$}\label{def R_R} \begin{cases} \lim\limits_{k\rightarrow \infty} e_k^{1/p^k}=0, & 1\leq p<p_0, \\ \lim\limits_{k\rightarrow \infty} e_k^{1/p^k}=1, & p_0<p \end{cases} \end{equation}

\Leftrightarrow \begin{equation}\tag{$R_L$}\label{def R_L} \lim\limits_{k\rightarrow \infty} |\ln e_k|^{\frac 1k}=p_0, \end{equation} \Leftrightarrow \forall \varepsilon >0,\ \exists A,B>0, \ 0<\eta,\theta<1, \ k_0 \geq 0 s.t.

\begin{equation}\tag{$R_{\varepsilon}$}\label{f. def R_eps} A\cdot \eta^{\left(  p_{0}+\varepsilon \right)  ^{k}}\leq e_k \leq B\cdot \theta^{\left(  p_{0}-\varepsilon \right)  ^{k}% },\; \; \forall k\geq k_0. \end{equation}


The C-order is clearly a particular class of the Q-order.

Relevant results can be found in the classical book of [Ortega & Rheinboldt, 1970], and in the book of Potra and Ptak (1984).

Tight connections between these orders were first shown by [Potra 1989], then by [Beyer, Ebanks & Qualls, 1990]. In two recent survey papers, [Catinas, 2019] and [Catinas, 2021] has made a rigorous presentation of all the aspects concerning this topic: definitions, connections, historical, computational aspects.

The connection between the Q- and R-orders can be seen taking a_k=\big \vert \ln e_k \big \vert in the classical inequalities
\liminf \limits_{k\rightarrow \infty}\frac{a_{k+1}}{a_{k}}\leq \liminf \limits_{k\rightarrow \infty}\left \vert a_{k}\right \vert ^{\frac{1}{k}}% \leq \limsup_{k\rightarrow \infty}\left \vert a_{k}\right \vert ^{\frac{1}{k}} \leq \limsup_{k\rightarrow \infty}\frac{a_{k+1}}{a_{k}}.%

It holds that C \Rightarrow Q \Rightarrow R, i.e., convergence with C-order p_0>1 of a given sequence attracts convergence with Q-order p_0 which in turn attracts convergence with R-order p_0, and none of the converse is true.

Superlinear convergence order (superlinear order of convergence / superlinear rate)

Superlinear convergence order holds when

\lim\limits_{k\rightarrow \infty}\textstyle\frac{e_{k+1}}{e_k}=0

In the recent paper [Catinas, 2023], it was shown that there are in fact four types of sequences with strict superlinear order (three of them being in increasing speed).

Linear convergence order (convergence with order one)

The classical linear convergence holds when
\lim \limits_{k\rightarrow \infty} Q_1(k)=Q_1\in(0,1) \qquad {\rm i.e.,}\ \lim\limits_{k\rightarrow \infty}\textstyle\frac{e_{k+1}}{e_k }=\lim\limits_{k\rightarrow \infty}\frac{| x^\ast – x_{k+1}|}{| x^\ast – x_k |}=Q_1\in(0,1),
and Q_1 is usually called “the convergence rate”.

Computational convergence orders

Instead of errors (usually not known), one may use computable quantities:

  • the corrections x_{k+1}- x_k or
  • the nonlinear residuals f(x_k), when solving iteratively nonlinear equations f(x)=0,

without requiring the knowledge of x^\ast or p_0.

Let s_k := |x_{k+1} – x_k| , and by denoting Q^{\prime}_p(k)=\frac{s_{k+1}}{{s_k}^p}, construct in the similar way as above the C^{\prime}, Q^{\prime}, R^{\prime} orders of convergence.

In the same way, let f_k := |f(x_k)| Q^{\prime\prime}_p(k)=\frac{f_{k+1}}{{f_k}^p} and construct C^{\prime\prime}, Q^{\prime\prime}, R^{\prime\prime}.

These notations were introduced in [Beyer, Ebanks & Qualls, 1990], the prime mark with no connection to differentiation.

Webpage under construction!!

Related Posts

How many steps still left to x*?

We survey the convergence orders of sequences and show the orders of the basic iterative sequences for solving nonlinear equations…