Loading web-font TeX/Math/Italic

Posts by Emil Cătinaş

Abstract

In this paper we apply some iterative methods obtained by inverse interpolation, in order to solve some specific classes of equations: the Ricatti equation, a Fredholm type equation, and the eigenvalue problem for a class of linear operators.

We obtain some semilocal convergence results, showing the r-convergence orders of the iterates.

Authors

Emil Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis)

Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)

Keywords

inverse interpolation iterative methods; Ricatti equation; Fredholm type equation; eigenvalue problem; semilocal convergence results; r-convergence order.

Cite this paper as:

E. Cătinaş, I. Păvăloiu, On some interpolatory iterative methods for the second degree polynomial operators (II), Rev. Anal. Numér. Théor. Approx., 28 (1999) no. 2, pp. 133-143.

PDF

Scanned paper: on the journal website.

Latex version of the paper (soon).

About this paper

Publisher Name

Editions de l’Academie Roumaine.

Print ISSN

1222-9024

Online ISSN

2457-8126

MR

?

ZBL

?

Google Scholar citations

Related Posts

On an Aitken type method

Abstract In this note we study the convergence of a generalized Aitken type method for approximating the solutions of nonlinear…