Posts by Emil Cătinaş

Abstract

In this paper we apply some iterative methods obtained by inverse interpolation, in order to solve some specific classes of equations: the Ricatti equation, a Fredholm type equation, and the eigenvalue problem for a class of linear operators.

We obtain some semilocal convergence results, showing the r-convergence orders of the iterates.

Authors

Emil Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis)

Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)

Keywords

inverse interpolation iterative methods; Ricatti equation; Fredholm type equation; eigenvalue problem; semilocal convergence results; r-convergence order.

Cite this paper as:

E. Cătinaş, I. Păvăloiu, On some interpolatory iterative methods for the second degree polynomial operators (II), Rev. Anal. Numér. Théor. Approx., 28 (1999) no. 2, pp. 133-143.

PDF

Scanned paper: on the journal website.

Latex version of the paper (soon).

About this paper

Publisher Name

Editions de l’Academie Roumaine.

Print ISSN

1222-9024

Online ISSN

2457-8126

MR

?

ZBL

?

Google Scholar citations

[1] M.P. Anselone and L.B. Rall, The Solution of Characteristic Value-Vector Problems by  Newton Method, Numer. Math. 11 (1968), 38-45.
[2] E. Catinas and I. Pavaloiu, On the Chebyshev method for approximating  the eigenvalue  of linear operators, Rev. Anal. Numer.  Theor. Approx., 25, 1-2 (1996), 43-56.
post
[3] E. Catinas and I. Pavaloiu, On a Chebyshev-type  Method for approximating  the solutions of Polynomial  Operator Equations  of Degree 2.  Proceedings of the International  Conference  on Approximation and  Optimization, Cluj-Napoca, July 29-August 1, 1996, Vol. 1, 219-226.
[4] E. Catinas and I. Pavaloiu, On approximating the eigenvalues and eigenvectors of linear continuous operators, Rev. Anal. Numer. Theor. Approx. 26 1-2 (1997),  19-27.
post
[5] E. Catinas and I. Pavaloiu, On some interpolatory iterative methods for the second degree polynomial operators (I).  Rev. Anal. Numer. Theor. Approx., to appear.
post
[6] F. Chatelin,  Valeurs propres  de matrices. Mason, Paris, 1988.
[7]  L. Collatz, Functionalanalysis   und Numerische  Mathematic. Springer-Verlag, Berlin,  1964.
 [8] J.J. Dongarra,  C.B. Moler and J.H. Wilkinson, Improving the Accurarcy  of the Computed  Eigenvalues and  Eigenvectors.  SIAM J.  Numer. Anal., 20 1 (1983), 23-45.
[9] S. M. Grzegórski, On the Scaled Newton Method for the Symmetric Eigenvalue Problem. Computingh, 45 (1990), pp.277-282.
[10] V. S, Kartîşov and L. Iuhno, O nekotorîh Modifikatiah Metoda Niutona dlea Resenia Nelineinoi Spektralnoi Zadaci. J. Vîcisl. matem. i matem. fiz.,33 9 (1973), pp. 1403-1409 (in Russìan).
[11] M. L. Krasnov, lntegral Equations, Theoretical Introduction, Nauka Moskow, 1975 (in russian).
[12] J. M. Ortega and W. C Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press. New York. 1970
[13] C. Peters and J H. Wilkison. Inverse Iteration, III-Conditioned Equations and Newton’s Method, SIAM Review.21. 3 (1979), pp.339-360.
[14] M. C. Santos. A Note on the Newton Iteration for the Algebraic Eigenvalue Problem, SIAM J. Matrix Anal. Appl., 9 4 (1988), pp.561-569.
[15] R. A. Tapia und L. D. Whitley. The Projected Newton Method has Order 1+√2 for the Symmetric Eigenvalue Problem, SIAM J. Numer. Anal. 25,6 (1988), pp.1376-1382.
[16] S. Ul’m,  On the Iterative Method with Simultaneous Approximation of the Inverse of the Operator, Izv. Acad. Nauk. Estonskoi S.S.R., 16 4 (1967), pp. 40-411.
[17] K. Wu. Y. Saad and A. Stathopoulos, Inexact Newton Preconditioning Techniques for Eigenvalue Problems, Lawrence Berkeley National Laboratory report number 41382 and Minnesota Supercomputing Institute report number UMSI 98-10, 1998.
[18] T. Yamamoto, Error Bounds for Computed Eigenvalues and Eigenvectors, Numer. Math., 34 (1980), pp.189-199.

Related Posts

On an Aitken type method

Abstract In this note we study the convergence of a generalized Aitken type method for approximating the solutions of nonlinear…