[1] M.P. Anselone and L.B. Rall, The Solution of Characteristic Value-Vector Problems by Newton Method, Numer. Math. 11 (1968), 38-45.
[2] E. Catinas and I. Pavaloiu,
On the Chebyshev method for approximating the eigenvalue of linear operators, Rev. Anal. Numer. Theor. Approx., 25, 1-2 (1996), 43-56.
post
[3] E. Catinas and I. Pavaloiu, On a Chebyshev-type Method for approximating the solutions of Polynomial Operator Equations of Degree 2. Proceedings of the International Conference on Approximation and Optimization, Cluj-Napoca, July 29-August 1, 1996, Vol. 1, 219-226.
[4] E. Catinas and I. Pavaloiu,
On approximating the eigenvalues and eigenvectors of linear continuous operators, Rev. Anal. Numer. Theor. Approx. 26 1-2 (1997), 19-27.
post
[5] E. Catinas and I. Pavaloiu,
On some interpolatory iterative methods for the second degree polynomial operators (I). Rev. Anal. Numer. Theor. Approx., to appear.
post
[6] F. Chatelin, Valeurs propres de matrices. Mason, Paris, 1988.
[7] L. Collatz, Functionalanalysis und Numerische Mathematic. Springer-Verlag, Berlin, 1964.
[8] J.J. Dongarra, C.B. Moler and J.H. Wilkinson, Improving the Accurarcy of the Computed Eigenvalues and Eigenvectors. SIAM J. Numer. Anal., 20 1 (1983), 23-45.
[9] S. M. Grzegórski, On the Scaled Newton Method for the Symmetric Eigenvalue Problem. Computingh, 45 (1990), pp.277-282.
[10] V. S, Kartîşov and L. Iuhno, O nekotorîh Modifikatiah Metoda Niutona dlea Resenia Nelineinoi Spektralnoi Zadaci. J. Vîcisl. matem. i matem. fiz.,33 9 (1973), pp. 1403-1409 (in Russìan).
[11] M. L. Krasnov, lntegral Equations, Theoretical Introduction, Nauka Moskow, 1975 (in russian).
[12] J. M. Ortega and W. C Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press. New York. 1970
[13] C. Peters and J H. Wilkison. Inverse Iteration, III-Conditioned Equations and Newton’s Method, SIAM Review.21. 3 (1979), pp.339-360.
[14] M. C. Santos. A Note on the Newton Iteration for the Algebraic Eigenvalue Problem, SIAM J. Matrix Anal. Appl., 9 4 (1988), pp.561-569.
[15] R. A. Tapia und L. D. Whitley. The Projected Newton Method has Order 1+√2 for the Symmetric Eigenvalue Problem, SIAM J. Numer. Anal. 25,6 (1988), pp.1376-1382.
[16] S. Ul’m, On the Iterative Method with Simultaneous Approximation of the Inverse of the Operator, Izv. Acad. Nauk. Estonskoi S.S.R., 16 4 (1967), pp. 40-411.
[17] K. Wu. Y. Saad and A. Stathopoulos, Inexact Newton Preconditioning Techniques for Eigenvalue Problems, Lawrence Berkeley National Laboratory report number 41382 and Minnesota Supercomputing Institute report number UMSI 98-10, 1998.
[18] T. Yamamoto, Error Bounds for Computed Eigenvalues and Eigenvectors, Numer. Math., 34 (1980), pp.189-199.