urmează a se traduce

[us_single_image image=”3085″ size=”medium”]
Summary

Profesor doctor docent, doctor Honoris Causa Dimitrie D. Stancu (Didi, pentru colegii apropiati).

Outstanding member of the Institute (between 1957-1961). Honorary member after 1961. Member of the Scientific Council of the Institute (1990?-2014?).

Membru magistru al Institutului.

He is also considered a magister professor that have honored the Faculty of Mathematics and Computer Science, “Babeş-Bolyai” University; he taught here between 1951-1997.

Honorary member of the Romanian Academy, Doctor Honoris Causa at North University Baia Mare and “Lucian Blaga” University, Sibiu.

He obtained important results in Approximation Theory, some operators being called after his name.

He is the most prominent disciple of acad. Tiberiu Popoviciu, and a most distinguished member of Cluj-Napoca Team on Numerical Analysis and Approximation Theory.

He had 46 PhD students, as illustrated in the above link and on the Mathematics Genealogy Project (incomplete).

As a professor at the Faculty of Mathematics and Computer Science (Babes-Bolyai University) he was a promoter not only of the Numerical Analysis, but also of Computer Science, teaching some of the first courses in the field (see here soon some works).

He had an important contribution in the development of Numerical Analysis and of IT industry in Cluj-Napoca, in Romania, and not only.

Other links:

(to be completed)


Version of April 23, 2017.

CV

Dimitrie D. Stancu CV

We believe the most complete CV was published in

I. Păvăloiu and E. Cătinaş, In memoriam professor Dimitire D. Stancu, honorary member of the Romanian Academy, Rev. Anal. Numér. Théor. Approx., 43 (2014) no. 2, pp. 93-102.

This CV is accompanied by the full (completed) list of publications. The list of PhD students to be completed.

Publications
2009
2004
2003
2002
2001
2000
  • a. D.D. Stancu, P. Giurgescu, On the evaluation of remainders in some linear approximation formulas, RoGer 2000 Brasov, 141–147, Schrreihe Fachbereichs Math. Gerhard Mercator Univ., 485, Gerhard-Mercator-Univ., Duisburg, 2000.
1999
  • a. D.D. Stancu, On the use of divided differences in the investigation of interpolatory positive linear operators, Studia Sci. Math. Hungar., 35 (1999) nos. 1–2, 65–80.
  • b. D.D. Stancu, A.D. Vernescu, Approximation of bivariate functions by means of a class of operators of Tiberiu Popoviciu type, Math. Rep., 1(51) (1999) no. 3, 411–419.
  • c. D.D. Stancu, A. Vernescu, On some remarkable positive polynomial operators of approximation, Rev. Anal. Numér. Théor. Approx., 28 (1999) no. 1, 85–95
1998
  • a. D.D. Stancu, Representation of remainders in approximation formulae by some discrete type linear positive operators, Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, vol. II (Acquafredda di Maratea, 1996). Rend. Circ. Mat. Palermo (2) Suppl., vol. II (1998), no. 52, 781–791.
  • b. D.D. Stancu, The remainder in the approximation by a generalized Bernstein operator: a representation by a convex combination of second-order divided differences, Calcolo, 35 (1998) no. 1, 53–62.
  • c. L. Gori, D.D. Stancu, Mean-value formulae for integrals involving generalized orthogonal polynomials, Rev. Anal. Numér. Théor. Approx., 27 (1998) no. 1, 107–115.
  • d. D.D. Stancu, M.R. Occorsio, On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27 (1998) no. 1, 167–181.
  • e. D.D. Stancu, The evaluation of the remainders in approximation formulas by linear positive operators of interpolatory type, Gen. Math., 6 (1998), 85–88.
1997
  • a. D.D. Stancu, Approximation properties of a class of multiparameter positive linear operators, Proceedings of the International Conference on Approximation and Optimization (Romania) – ICAOR, Cluj-Napoca, July 29 – August 1, 1996, D.D. Stancu, Gh. Coman, W. Breckner, P. Blaga (Eds.), Vol. I, Transilvania Press, Cluj-Napoca, 1997, 107–120, ISBN 973-98180-7-2.
  • b. D.D. Stancu, C. Cismaşiu, On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1–2, 221–227.
1996
  • a. D.D. Stancu, A note on the remainder in a polynomial approximation formula, Studia Univ. Babeş-Bolyai Math., 41 (1996) no. 2, 95–101.
1995
  • a. D.D. Stancu, On the beta approximating operators of second kind, Rev. Anal. Numér. Théor. Approx., 24 (1995) nos. 1–2, 231–239.
1994
  • a. D.D. Stancu, On the integral representation of the remainders in approximation formulae by means of interpolatory linear positive operators, Univ. Babeş-Bolyai, Faculty of Mathematics and Informatics, Research Seminars, Seminar on Numerical and Statistical Calculus, Preprint nr. 1 (1994), 69–80.
  • b. D.D. Stancu, L. Gori, On the monotonicity properties of a sequence of operators of Meyer-König and Zeller type, Studia Univ. Babeş-Bolyai Math., 39 (1994) no. 2, 97–106.
1993
  • a. D.D. Stancu, R.M. Occorsio, Mean-value formulae for integrals obtained by using Gaussian-type quadratures, Rendiconti del Circolo Matematico di Palermo, Ser. II, (1993) no. 33, 463–478 (Proceedings of the Second International Conference in Functional Analysis and Approximation Theory, Acquafredda di Maratea, Italy, 1992).
1992
  • a. D.D. Stancu, F. Stancu, Quadrature rules obtained by means of interpolatory linear positive operators, Rev. Anal. Numér. Théor. Approx., 21 (1992) no. 1, 75–81.
1987
  • a. D.D. Stancu, On some spline-type operators of approximation, Studia Univ. Babeş-Bolyai, Cluj-Napoca, Ser. Math., 32 (1987) no. 4, 47–54.
1986
  • a. D.D. Stancu, On a class of multivariate linear positive approximating operators, Studia Univ. Babeş-Bolyai, Ser. Math., 31 (1986) no. 4, 56–64.
1985
  • a. D.D. Stancu, Probabilistic approach to a class of generalized Bernstein approximating operators, Anal. Numér. Théor. Approx., 14 (1985) no. 1, 83–89.
  • b. D.D. Stancu, On the representation by divided differences of the remainder in Bernstein’s approximating formula, Univ. Babeş-Bolyai, Cluj-Napoca, Research Seminars: Seminar on Numerical and Statistical Calculus, Preprint no. 4, 1985, 103–110.
1984
  • a. D.D. Stancu, Generalized Bernstein approximating operators, Itinerant Seminar on functional equations, approximation and convexity, Univ. Babeş-Bolyai, Cluj-Napoca, 1984, 185–192.
  • b. D.D. Stancu, A note on a multiparameter Bernstein-type approximating operator, Mathematica (Cluj), 26(49) (1984) no. 2, 153–157.
  • c. D.D. Stancu, Bivariate approximation by some Bernstein-type operators, Proc. Colloquium on Approximation and Optimization, Univ. Babeş-Bolyai, Cluj-Napoca, 1984, 25–34.
1983
  • a. D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983) no. 2, 211–229.
  • b. D.D. Stancu, On the representation by divided and finite differences of some linear positive operators constructed by means of probabilistic methods, Itinerant Seminar on functional equations, approximation and convexity, Univ. Babeş-Bolayai, Cluj-Napoca, 1983, 159–166.
1982
  • a. D.D. Stancu, Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf. Mth. Res. Inst. Oberwolfach, 1981; ed. G. Hämmerlin; ISNM 57), Birkhäuser, Basel, 1982, 241–251.
  • b. D.D. Stancu, Procedures of numerical integration of functions obtained by means of some linear positive operators, Itinerant Seminar on functional equations, approximation and convexity, Univ. Babeş-Bolyai, Cluj-Napoca, 1982, 333–337.
1981
  • a. D.D. Stancu, On a generalization of the Tiberiu Popoviciu quadrature formula of maximum degree of exactness, Itinerant Seminar on functional equations, approximation and convexity, Univ. Babeş-Bolyai, Cluj-Napoca, 1981, 383–394 (in Romanian).
  • b. D.D. Stancu, A generalization of the Schoenberg approximating spline operator, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech., 26 (1981) no. 2, 37–42.
1980
  • a. D.D. Stancu, Representations of the remainder in some linear approximation formulas, Itinerant Seminar on functional equations, approximation and convexity, Univ. Babeş-Bolyai, Cluj-Napoca, 1980, 127–129 (in Romanian).
  • b. D.D. Stancu, A study of the remainder in an approximation formula using a Favard-Szász type operator, Studia Univ. Babeş-Bolyai, Cluj-Napoca, Ser. Math.- Mech., 25 (1980) no. 4, 70–76.
1979
  • a. D.D. Stancu, An extremal problem in the theory of numerical quadratures with multiple nodes, Proc. Third Colloquium on Operations Research (Cluj-Napoca, 1978), Univ. Babeş-Bolyai, 1979, 257–262.
  • b. D.D. Stancu, Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernstein polynomials, Calcolo, 16 (1979), 431–445.
  • c. D.D. Stancu, Representations of the remainder in an approximation formula of Farvard-type, Itinerant seminar on functional equations, approximation and convexity, Univ. Babeş-Bolyai, Cluj-Napoca, 1979, 185–190 (in Romanian).
1978
  • a. D.D. Stancu, Approximation of bivariate functions by means of some Bernstein-type operators, Multivariate Approximation (Proc. Sympos. Durham, 1977; ed. D.C. Handscomb), 189–208, Academic Press, London, 1978.
  • b. D.D. Stancu, On the precision of approximation of differentiable functions by means of linear positive operators, Itinerant Seminar on functional equations, approximation and convexity, Univ. Babeş-Bolyai, Cluj-Napoca, 1978, 74–75 (in Romanian).
1977
  • a. D.D. Stancu, Use of Biermann’s interpolation formula for constructing a class of positive linear operators for approximating multivariate functions, Constructive Theory of Functions of Several Variables (Proc. Conf. Math. Res. Inst. Oberwolfach, 1976; eds. W. Schempp, K. Zeller), Lecture Notes in Mathematics, vol. 571, 1977, 267–276, Springer, Berlin.
1976
  • a. D.D. Stancu, Folosirea interpolării liniare pentru construirea unei clase de polinoame Bernstein, Studii şi Cercet. Matematice, 28 (1976) no. 3, 369–379 (in Romanian) [English title: Use of linear interpolation for constructing a class of Bernstein polynomials].
1975
  • a. D.D. Stancu, Evaluation of the remainders in certain approximation procedures by Meyer-König and Zeller-type operators, Numerische Methoden der Approximationstheorie, Bd. II (Proc. Conf. Math. Res. Inst. Oberwolfach, 1973; eds. L Collatz.-G. Meinardus; ISNM 26), Basel-Stuttgart, 1975, 139–150.
1972
  • a. D.D. Stancu, Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Bd. 1 (Proc. Conf. Math. Res. Inst. Oberwolfach, 1971; eds. L. Collatz, G. Meinardus), 187–203, Birkhäuser, Basel, 1972.
  • b. D.D. Stancu, A new generalization of the Meyer-König and Zeller operators, Analele Univ. Timişoara, Ser. St. Mathem., 10 (1972) no. 2, 207–214.
1971
  • a. D.D. Stancu, On the approximation of functions of two variables by means of a class of linear operators, Constructive Theory of Functions (Proc. Int. Conf. Varna, May 19-25, 1971; eds. B. Penko, D. Vascov), Izdat. Bolgar. Akad. Nauk, 327–336, 1972, Sofia.
  • b. D.D. Stancu, On the remainder of approximation of functions by means of a parameter-dependent linear polynomial operator, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Mech., 16 (1971) no. 2, 59–66.
1970
  • a. D.D. Stancu, Aproximarea funcţiilor de două şi mai multe variabile printr-o clasă de polinoame de tip Bernstein, Studii şi Cercet. Matem., 22 (1970) no. 2, 335–345 (in Romanian).
  • b. D.D. Stancu, Asupra funcţiilor de repartiţie pentru legile probabilistice ale lui Bernoulli şi Poisson multidimensionale, Studii şi Cercet. Matem., 22 (1970) no. 4, 675–681 (in Romanian).
  • c. D.D. Stancu, Relaţii de recurenţă pentru momentele centrate ale unor legi discrete de probabilităţi, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech., 15 (1970) no. 1, 55–62 (in Romanian).
  • d. D.D. Stancu, A new class of uniform approximating polynomial operators in two and several variables, Proc. Conf. Constructive Theory of Functions, Budapest, 1969 (eds. G. Alexits, S. B. Steckin), 443–455, Budapest Akademiai Kiadó, 1972.
  • e. D.D. Stancu, Probabilistic methods in the theory of approximation of functions of several variables by linear positive operators, “Approximation Theory” (Proc. Sympos. Lancaster, 1969; ed. A. Talbot), 329–342. Academic Press, London-New York, 1970.
  • f. D.D. Stancu, Two classes of positive linear operators, Analele Univ. Timişoara, ser. St. Matematice, 8 (1970), 213–220.
  • g. D.D. Stancu, Approximation properties of a class of linear positive operators, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Mech., 15 (1970) no. 2, 33–38.
1969
  • a. D.D. Stancu, Use of probabilistic methods in the theory of uniform approximation of continuous functions, Revue Roumaine Math. Pures Appl., 14 (1969) no. 5, 673–691.
  • b. D.D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math-Phys., 14 (1969) no. 2, 31–45 (in Romanian).
1968
  • a. D.D. Stancu, On the moments of negative order in the positive Bernoulli and Poisson variables, Studia Univ. Babeş-Bolyai, Cluj, 13 (1968) no. 1, 27–31.
  • b. D.D. Stancu, Approximation of functions by a new class of linear polynomial operators, Revue Roumaine Math. Pures Appl., 13 (1968) no. 8, 1173–1194.
  • c. D.D. Stancu, On the Markov probability distribution, Bull. Math. Soc. Sci. Math. R.S. Roumaine, 12 (1968) no. 4, 203–208.
  • d. D.D. Stancu, On a new positive linear polynomial operator, Proc. Japan Acad., 44 (1968), 221–224.
1967
  • a. D.D. Stancu, A method for computing the moments of the multinomial and multiple Poisson distributions, Studia Univ. Babeş-Bolyai, Cluj, 12 (1967) no. 1, 49–54.
  • b. D.D. Stancu, On the monotonicity of the sequence formed by the first order derivatives of the Bernstein polynomials, Mathem. Zeitschr., 98 (1967), 46–51.
  • c. D.D. Stancu, On the moments of the Polya distribution, Acad. R.P. Române, Institutul de Calcul, Proc. Colloquium on Approximation Theory, Cluj, 1967, p. 216.
1966
  • a. D.D. Stancu, On Hermite’s osculatory interpolation formula and on some generalizations of it, Mathematica (Cluj), 8(31) (1966) no. 2, 373–391.
1965
  • a. D.D. Stancu, A general interpolation formula, Acad. R.P. Române, Fil. Cluj, Institutul de Calcul, Proc. Colloquium on convex functions, with applications to numerical calculus, Cluj, 1965, 92–93.
  • b. A.H. Stroud, D.D. Stancu, Quadrature formulas with multiple Gaussian nodes, J. SIAM Numer. Analysis, 2 (1965), 129–143.
1964
  • a. D.D. Stancu, Asupra momentelor unor variabile aleatoare discrete, Studia Univ. Babeş-Bolyai, Ser. Math.-Physica, 9 (1964) no. 2, 35–48 (in Romanian).
  • b. D.D. Stancu, The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Analysis, Ser. B., 1 (1964), 137–163.
1963
  • a. D.D. Stancu, A method for obtaining polynomials of Bernstein type of two variables, Amer. Math. Monthly, 70 (1963) no. 3, 260–264.
  • b. D.D. Stancu, Evaluation of the remainder term in approximation formula by Bernstein polynomials, Mathematics of Computation, 17 (1963) no. 83, 270–278.
  • c. D.D. Stancu, Generalizations of an inequality of G.G. Lorentz, Analele Ştiinţifice Univ. “Al. I. Cuza” Iaşi, 9 (1963) no. 1, 49–58.
  • d. D.D. Stancu, A.H. Stroud, Quadrature formulas with simple Gaussian nodes and multiple fixed nodes, Mathematics of Computation, 17 (1963) no. 84, 384–394.
1962
  • a. D.D. Stancu, On the remainder in the approximation formulas by Bernstein’s polynomials, Amer. Math. Society Notices, 9 (1962) no. 1, p. 26.
  • b. D.D. Stancu, Asupra reprezentării integrale a restului din formula lui Taylor de două variabile, Acad. R.P. Române, Fil. Cluj, Studii şi Cercet. Matem., 13 (1962) no. 1, 175–182.
  • c. D.D. Stancu, The remainder of certain linear approximation formulas for two variables, Amer. Math. Society Notices, 9 (1962) no. 2, p. 207.
1961
  • a. D.D. Stancu, A generalization of a G.G. Lorentz inequality, Amer. Math. Society Notices, 8 (1961) no. 7, p. 563.
1960
  • a. D.D. Stancu, O nekotorâh mnogocilenah dvuh peremennâh tipa Bernsteina i nekotorâh ih primeniah, Dolk. Akad. Nauk, 555R 134 (1960) no. 1, 48–51 (in Russian); translated in English as: Some Bernstein polynomials in two variables and their applications, in: Soviet Math. D., 1 (1961), 1025–1028 (see above).
  • b. D.D. Stancu, Asupra aproximării funcţiilor de două variabile prin polinoame de tip Bernstein. Câteva evaluări asimptotice, Acad. R.P. Române, Fil. Cluj, Studii şi Cercet. Matem., 11 (1960) no. 1, 171–176 (in Romanian).
  • c. D.D. Stancu, Expresia integrală a restului într-o formulă de tip Taylor pentru funcţiile de două variabile, Acad. R.P. Române, Fil. Cluj, Studii şi Cercet. Matem., 11 (1960) no. 1, 177–183 (in Romanian).
  • d. D.D. Stancu, Asupra unor polinoame de tip Bernstein, Acad. R.P. Române, Fil.Iaşi, Studii şi Cercet. Matematice, 11 (1960) no. 2, 221–233 (in Romanian).
  • e. D.D. Stancu, Some Bernstein polynomials in two variables and their applications, Soviet Math. D., 1 (1961), 1025–1028.
  • f. D.D. Stancu, Sur l’approximation des dérivées des fonctions par les dérivées correspondantes de certains polynomes du type Bernstein, Mathematica (Cluj), 2(25) (1960) no. 2, 335–348.
  • g. D.D. Stancu, Asupra calculului coeficienţilor unei formule generale de cuadratură, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Phys, 5 (1960) no. 1, 187–192 (in Romanian).
  • h. D.D. Stancu, Généralisations de certaines inegalités des T. Popoviciu et G.G. Lorentz, Deuxième Congrès Mathematique Hongrois, Budapest 24-31 August 1960, Akademiai Kiadó, Budapest, 1961, vol. I, Sect. 3a, 55–56.
  • l. D.D. Stancu, Expresia restului în unele formule de derivare parţială numerică, Acad. R.P. Române, Fil. Cluj, Studii şi Cercet. Matem., 11 (1960) no. 2, 371–380 (in Romanian).
1959
  • a. D.D. Stancu, O nekotorâh razlojeniah Teilora dlia funckţii neskolkih peremennâh, [Some Taylor developments for functions of several variables], Revue Math. Pures Appl., Acad. R.P. Române, 4 (1959) no. 2, 249–265 (in Russian).
  • b. D.D. Stancu, Asupra aproximării prin polinoame de tip Bernstein a funcţiilor de două variabile, Comunic. Acad. R.P. Române, 9 (1959) no. 8, 773–777 (in Romanian).
  • c. D.D. Stancu, Sur quelques formules générales de quadrature du type Gauss-Christoffel, Mathematica (Cluj), 1(24) (1959) no. 1, 167–182.
  • d. D.D. Stancu, Asupra unei demonstraţii a teoremei lui Weierstrass, Buletinul Inst. Politehnic Iaşi (N.S.) 5(9) (1959) nos. 1–2, 47–50 (in Romanian).
1958
  • a. D.D. Stancu, O metodă pentru construirea de formule de cuadratură de grad înalt de exactitate, Comunic. Acad. R.P. Rom., 8 (1958) no. 4, 349–358 (in Romanian).
  • b. D.D. Stancu, Asupra unor formule generale de integrare numerică, Acad. R.P. Române, Studii şi Cercet. Matem., 9 (1958) no. 1, 209–216 (in Romanian).
  • c. D.D. Stancu, Asupra formulelor de cuadratură de tip Gauss, Studia Univ. V. Babeş şi Bolyai, Cluj, 1 (1958), 71–84 (in Romanian).
  • d. D.D. Stancu, O metodă pentru construirea de formule de cubatură pentru funcţiile de două variabile, Acad. R.P. Române, Fil. Cluj, Studii şi Cercet. Matem., 9 (1958), 351–369 (in Romanian).
  • e. D.D. Stancu, Asupra integrării numerice a funcţiilor de două variabile, Acad. R.P. Române, Fil. Iaşi, Studii şi Cercet. St. Matem., 9 (1958) nos. 1–4, 5–21 (in Romanian).
1957
  • a. D.D. Stancu, Generalizarea unor formule de interpolare pentru funcţiile de mai multe variabile şi unele consideraţii asupra formulei de integrare numerică a lui Gauss, Acad. R.P. Române, Buletin Ştiinţific Sect. Sti. Mat. Fiz., 9 (1957) no. 2, 287–313 (in Romanian).
  • b. D.D. Stancu, Consideraţii asupra interpolării polinomiale a funcţiilor de mai multe variabile, Buletinul Univ. “V. Babeş şi Bolyai”, Ser. St. Naturii, 1 (1957), 43–82 (in Romanian).
  • c. D.D. Stancu, Contribuţii la integrarea numerică a funcţiilor de mai multe variabile, Acad. R.P. Române, Fil. Cluj, Studii şi Cercet. Matem., 8 (1957) nos. 1–2, 75–101 (in Romanian).
  • d. D.D. Stancu, Asupra formulei de interpolare a lui Hermite şi a unor aplicaţii ale acesteia, Acad, R.P. Române, Fil.Cluj, Studii şi Cercet. Matem., 8 (1957) nos. 3–4, 339–355 (in Romanian).
  • e. D.D. Stancu, Generalizarea unor polinoame de interpolare pentru funcţiile de mai multe variabile, Buletinul Inst. Polithenic Iaşi (N.5), 3(7) (1957) nos. 1–2, 31–38 (in Romanian).
  • f. D.D. Stancu, Asupra unei clase de polinoame ortogonale şi unor formule generale de cuadratură cu număr minim de termeni, Buletin Mat. Soc. St. Mat. Fiz., R.P.R., 1(49) (1957) no. 4, 479–498 (in Romanian) [French title: Sur une classe de polynômes orthogonaux et sur des formules générales de quadrature à nombre minimum de termes].
  • g. D.D. Stancu, Generalizarea formulei de cuadratură a lui Gauss-Christoffel, Acad. R.P. Române, Fil. Iaşi, Studii şi Cercet. Matem., 8 (1957) no. 1, 1–18 (in Romanian).
1956
  • a. D.D. Stancu, Contribuţii la derivarea parţială numerică a funcţiilor de două şi mai multe variabile, Acad. R.P. Române, Buletin Ştiinţific, Sect. Sti. Mat. Fiz., 8 (1956) no. 4, 733–763 (in Romanian).
Meniu