Ştefan M. Şoltuz
The information on this webpage is no longer updated.
e-mail: soltuzul[at]yahoo.com, stefanmsoltuz[at]yahoo.com
Academic degree:
Ph.D. in Mathematics (2004)
Thesis title: Contributions to the theory of Mann and Ishikawa iterations
Supervisor: Prof. dr. Iosif Kolumban
Current position:
former member (between 1998-2014) of ICTP
Research domains:
- Fixed Point Theory
- Functional analysis
- ODEs
version of December 2, 2022.
Education background:
2004 | Ph.D. in mathematics with honours at Faculty of Mathematics and Computer Science, “Babeş-Bolyai” University, Cluj |
1995-1996 | Master degree with honours at Faculty of Mathematics and Computer Science, “Babeş-Bolyai” University, Cluj-Napoca |
1991-1995 | Faculty of Mathematics and Computer Science, “Babeş-Bolyai” University, Cluj-Napoca. |
Additional education:
2001-2004 | Sandwich Ph. D. Program, for 34 months, in University of Kaiserslautern, at Fraunhofer-Institute fuer Techno und Wirtschaft Mathematik (ITWM), Kaiserslautern, Germany. |
Working experience:
1996 – 1997 | high school teacher. |
1998 – 2005 | research assistant, “Tiberiu Popoviciu” Institute of Numerical Analysis, Cluj-Napoca, Romanian Academy |
2005 – present | scientific researcher III, “Tiberiu Popoviciu” Institute of Numerical Analysis, Cluj-Napoca, Romanian Academy |
Aug. 2007- May 2008 | Assistant Professor at Universidad de los Andes (Colombia) |
Teaching experience:
Aug. 2007-May 2008 | Assistant Professor at Universidad de los Andes, teaching Numerical Methods (with Matlab), Differential Equations, Calculus and Linear Algebra. |
Fall 1999-Spring 2000 | Math M 211 and M 212 (Calculus): Adjunct Assistant Professor at Babes-Bolyai University, Introduction to Mathematical Analysis for students from Chemical Engineering and Chemistry. |
Fall 2003 | Math M311: Adjunct Assistant Professor at Kaiserslautern University, Functions of several variable, ODE, Minimum and Maximum problems,limits, integration (Analysis I and II). |
Computer experience
- Operating systems: Windows, Linux
- Programming languages: Matlab
- Word-processing languages: Scientific Work Place
Languages
English (fluent), French (fluent), German (fluent), Italian (fluent).
- Ş.M. Şoltuz, B.E. Rhoades, A mixed iteration for nonnegative matrix factorizations, Appl. Math. Comput., 219 (2013) no. 18, 9847-9855.
- V.V. Morariu, C. Vamoş, Ş.M. Şoltuz, A. Pop, L. Buimaga-Iarinca, O. Zainea, Autoregressive modeling of biological phenomena, Biophysical Reviews and Letters, vol. 5 (2010) no. 3, pp. 109-128.
- V.V. Morariu, C. Vamoş, A. Pop, Ş.M. Şoltuz and L. Buimaga-Iarinca, Autoregressive modeling of the variability of an active galaxy, Romanian Journal of Physics, v. 55 (2010) nos. 7-8, pp. 676-686.
- Ş.M. Şoltuz, Data dependece for strongly pseudocontractive operators, Advances in Nonlinear Variational Inequalities, v. 13 (2010), 19-27.
- Ş.M. Şoltuz, Inverse problems via generalized contractive operators, Rev. Anal. Numer. Theor. Approx., 39 (2010) no. 2, 164-168.
- Ş.M. Şoltuz, Solving inverse problems via hemicontractive maps, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 2387-2390.
- Ş.M. Şoltuz, Solving inverse problems via weak-contractive maps, Rev. Anal. Numer. Theor. Approx., 37 (2008) no 2, pp. 217-220.
- S.M. Şoltuz, The equivalence between the T-stabilities of Picard-Banach and Mann-Ishikawa iterations. Applied Math. E-Notes, 8 (2008), 109-114.
- S.M., Şoltuz, T. Groşan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl. 2008, article ID 242916.
- S.M. Şoltuz, B.E. Rhoades, Characterization for the convergence of Krasnoselskij iteration for non-Lipschitzian operators, Int. J. Math. Math. Sci. 2008, article ID 630589.
- S.M. Soltuz, Stability of solutions for a class of minimization problems, Tamkang J. Math., 17 (2007) no. 4, 17-30.
- Ş.M. Şoltuz, D. Otrocol, Classical results via Mann-Ishikawa iteration, Rev. Anal. Numer. Theor. Approx., 36 (2007) no. 2, 193-197.
- Ş.M. Şoltuz, D. Otrocol, The convergence of Mann iteration with delay, Mathematical Sciences Research, 11 (2007) no. 3, pp. 390-393.
- Ş. Şoltuz, The convergence of modified Mann-Ishikawa iterations when applied to an asymptotically pseudocontractive map, Austral. J. Math Anal. Appl., 4 (2007) no. 2.
- V.V. Morariu, L. Buimaga-Iarinca, C. Vamoş, Ş.M. Şoltuz, Detrended fluctuation analysis of autoregressive processes, Fluct. Noise Lett., 7, L249-L255, 2007.
- Ş.M. Şoltuz, The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and multistep iterations, Math. Commun. 12 (2007) no. 1, 53-61.
- C. Vamoş, Ş.M. Şoltuz, M. Crăciun, Order 1 autoregressive process of finite length, Rev. Anal. Numér. Théor. Approx., 36 (2007) no. 2, pp. 201-216.
- Ş.M. Şoltuz, The equivalence between T-stabilities of the Krasnoselskij and the Mann iterations, Fixed Point Theory and Applications, (2007) art. id. 60732.
- B.E. Rhoades, Ş.M . Şoltuz, The equivalence between the T-stabilities of Mann and Ishikawa iterations, J. Math. Anal. Appl. 318 (2006), 472-475.
- B.E. Rhoades, Ş.M . Şoltuz, The convergence of an implicit mean value iteration, Int. J. Math. Math. Sci. 2006 ID 68369, 7 p.
- B.E. Rhoades, Ş.M. Şoltuz, The equivalence of Mann and Ishikawa iterations dealing with uniformly pseudocontractive maps without bounded range, Tamkang J. Math. 37 (3) (2006).
- B.E. Rhoades and Ş.M. Şoltuz, The equivalence between Mann and Ishikawa iterations dealing with generalized contractions, Int. J. Math. Math. Sci. 2006, article ID 54653.
- Ş.M. Şoltuz, Errors estimation for implicit Mann iteration, Rev. Anal. Numer. Theor. Approx. 35 (2006) no. 1, 117-118.
- B.E. Rhoades and Ş.M. Şoltuz, The equivalence between the Krasnoselskij, Mann and Ishikawa iterations, Rev. Anal. Numer. Theor. Approx. 35 (2006) no. 2, 199-205.
- Ş.M. Şoltuz, The equivalence between the T-stabilities of modified Mann-Ishikawa and Mann-Ishikawa iterations, Rev. Anal. Numer. Theor. Approx. 35 (2006) no. 2, 221-224.
- B.E. Rhoades, Ş.M. Şoltuz , The convergence of mean value iteration for a family of maps, Int. J. Math. Math. Sci. 2005: 21, 3479-3485.
- B.E. Rhoades and Ş.M. Şoltuz, The class of asymptotically demicontractive maps is a proper subclass of asymptotically pseudocontractive maps, PanAmerican Mathematical Journal Volume 16 (2006) no 2, 93-97.
- B.E. Rhoades and Ş.M. Şoltuz, Mean value iteration for a family of functions, Nonlinear Funct. Anal. Appl.,10 (2005) no. 3, pp. 387-401.
- Ş.M. Şoltuz, The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Math. Commun. 10 (2005) no. 2, 81-88.
- Ş.M. Şoltuz, New technique for proving the equivalence of Mann and Ishikawa iterations, Rev. Anal. Numer. Theor. Approx., 34 (2005) no. 1, 103-108.
- B.E. Rhoades and Ş.M. Şoltuz, The Mann and Ishikawa iterations and the Mann-Ishikawa with errors are equivalent models dealing with a non-Lipschitzian map, Rev. Anal. Numer. Theor. Approx., 34 (2005) no. 2, 181-193.
- Ş.M. Şoltuz, On the boundedness of the associated sequence of Mann iteration for several operator classes with applications, Rev. Anal. Numer. Theor. Approx., 34 (2005) no. 2, 227-232.
- Ş.M. Şoltuz, A remark concerning the paper “An equivalence between the convergence of Ishikawa, Mann and Picard iterations”, Rev. Anal. Numer. Theor. Approx. 33 (2004) no. 1, 95-96.
- B.E. Rhoades and Ş.M. Şoltuz, The equivalence of Mann and Ishikawa iterations dealing with strongly pseudocontractive or strongly accretive maps, PanAmerican Mathematical Journal, 14 (2004) no. 4, 51-59.
- B.E. Rhoades and Ş.M. Şoltuz, The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Analysis: Theory, Methods & Applications, 58 (2004) no. 1-2, 219-228.
- B.E. Rhoades and Ş.M. Şoltuz, The equivalence of Mann and Ishikawa iteration for a Lipschitzian ψ-uniformly pseudocontractive and ψ-uniformly accretive map, Tamkang J. Math. 35 (2004), 235-245.
- B.E. Rhoades and Ş.M. Şoltuz, The Equivalence of Mann Iteration and Ishikawa iteration for ψ-uniformly pseudocontractive or ψ-uniformly accretive maps, Internat. J. Math. Sci. 2004: 46, 2443-2451.
- B.E. Rhoades and Ş.M. Şoltuz, The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically nonexpansive in the intermediate sense and strong successively pseudocontractive maps, J. Math. Anal. Appl. 289 (2004), 266-278.
- Ş.M. Şoltuz, Mann-Ishikawa iterations and Mann-Ishikawa iterations with errors are equivalent models, Math. Commun. 8 (2003) no. 2, 139-151.
- B.E. Rhoades and Ş.M. Şoltuz, The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically pseudocontractive map, J. Math. Anal. Appl. 283 (2003), 681-688.
- B.E. Rhoades and Ş.M. Şoltuz, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators, Internat. J. Math. Math. Sci. 2003 (42), 2645-2652.
- B.E. Rhoades and Ş.M. Şoltuz, On the equivalence of Mann and Ishikawa iteration methods, Internat. J. Math. Math. Sci. 2003 (7), 451-459.
- Ș.M. Șoltuz, The convergence of mann iteration for an asymptotic hemicontractive map, Buletinul ştiinţific al Universitatii Baia Mare, Seria B, Fascicola matematică-informatică, 18 (2002) no. 1, pp. 115-118.
- Ş.M. Şoltuz, A correction for a result on convergence of Ishikawa iteration for strongly pseudocontractive maps, Math. Commun. 7 (2002) no. 1, 61-64.
- Ş.M. Şoltuz, Mann iteration for direct pseudocontractive maps, Bull. Stiint. Univ. Baia Mare, Ser. B, Fasc. Mat.-Inform., 17 (2001) nos. 1-2, 141-144.
- Ş.M. Şoltuz, Mann iteration for generalized pseudocontractive maps in Hilbert spaces, Math. Commun. 6 (2001) no. 1, 97-100.
- Ş.M. Şoltuz, Sequence supplied by inequalities and an application, (Co- Editors Yeol Je Cho, Jong Kyu Kim, Sever S. Dragomir, Inequality Theory and Applications vol. 2, Nova Publishers Inc. New York 2002, USA).
- Ş.M. Şoltuz, Sequences supplied by inequalities, Revue Anal. Numer. Theor. Approx. 29 (2000) no. 2, 207-212.
- Ş.M. Şoltuz, The backward Mann iteration, Octogon Math. Mag. 9 (2001):2, 797-800.
- Ş.M. Şoltuz, Three proofs for the convergence of a sequence, Octogon Math. Mag. 9 (2001):1, 503-505.
- Ş.M. Şoltuz, Characterization of inner product spaces, Octogon Math. Mag. 9 (2001):1, 482-487.
- Ş.M. Şoltuz, The multivalued form of a classic result, Octogon Math. Mag. 7 (1999):2, 97-98.
- Ş.M. Şoltuz, Upon the convergence of subconvex sequences, Octogon Math. Mag .6 (1998):2, 120-121.