Posts by Diana Otrocol

Abstract

In this paper we study some properties of the solutions of a second order system of functional-differential equations with maxima, of mixed type, with “boundary” conditions. We use the weakly Picard operator technique.

    Authors

    Diana Otrocol
    Technical University of Cluj-Napoca, Romania
    Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

    Keywords

    weakly Picard operator; equations of mixed type; equations with maxima

    References

    See the expanding block below.

    Paper coordinates

    D. Otrocol, Qualitative properties of solutions for mixed type functional-differential equations with maxima, Miskolc Mathematical Notes, 20 (2019) no. 2, pp. 1119–1128,
    DOI: 10.18514/MMN.2019.1946

    PDF

    not available yet.

    About this paper

    Journal

    Miskolc Mathematical Notes

    Publisher Name

    ?

    Print ISSN

    1787-2405

     

    Online ISSN

    1787-2413

    Google Scholar Profile

    google scholar

    [1] D. D. Bainov and S. G. Hristova, Differential equations with maxima. New York: Chapman & Hall/CRC Pure and Applied Mathematics, 2011.
    [2] D. D. Bainov and D. Mishev, Oscillation theory of operator-differential equations. Singapore: World Scientific, 1995.
    [3] L. Georgiev and V. G. Angelov, “On the existence and uniqueness of solutions for maximum equations.” Glas. Mat., vol. 37, no. 2, pp. 275–281, 2002.
    [4] D. Otrocol, “Systems of functional differential equations with maxima, of mixed type.” Electron. J. Qual. Theory Differ. Equ., vol. 2014, no. 5, pp. 1–9, 2014, doi: https://doi.org/10.14232/ejqtde.2014.1.5.
    [5] D. Otrocol and I. A. Rus, “Functional-differential equations with maxima of mixed type argument.” Fixed Point Theory, vol. 9, no. 1, pp. 207–220, 2008.
    [6] D. Otrocol and I. A. Rus, “Functional-differential equations with “maxima” via weakly Picard operators theory.” Bull. Math. Soc. Sci. Math. Roumanie, vol. 51(99), no. 3, pp. 253–261, 2008.
    [7] I. A. Rus, Generalized contractions and applications. Cluj-Napoca: Cluj University Press, 2001.
    [8] I. A. Rus, “Functional differential equations of mixed type, via weakly Picard operators.” Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, pp. 335–346, 2002.
    [9] I. A. Rus, “Picard operators and applications.” Sci. Math. Jpn., vol. 58, no. 1, pp. 191–219, 2003.
    [10] I. A. Rus, A. Petrus¸el, and M. A. S¸ erban, “Weakly Picard operators: equivalent definitions, applications and open problems.” Fixed Point Theory, vol. 7, no. 1, pp. 3–22, 2006.
    [11] B. Zhang and G. Zhang, “Qualitative properties of functional equations with “maxima”.” Rocky Mt. J. Math., vol. 29, no. 1, pp. 357–367, 1999

    QUALITATIVE PROPERTIES OF SOLUTIONS FOR MIXED TYPE FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH MAXIMA

    Diana Otrocol Department of Mathematics
    Technical University of Cluj-Napoca
    Memorandumului Street 28
    400114 Cluj-Napoca
    Romania Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
    P.O.Box. 68-1
    400110, Cluj-Napoca
    Romania
    dotrocol@ictp.acad.ro, Diana.Otrocol@math.utcluj.ro
    Abstract.

    In this paper we study some properties of the solutions of a second order system of functional-differential equations with maxima, of mixed type, with “boundary” conditions. We use the weakly Picard operator technique.

    Key words and phrases:
    Weakly Picard operator, equations of mixed type, equations with maxima
    2010 Mathematics Subject Classification:
    Primary 34K10; Secondary 47H10

    1. Introduction

    Differential equations with maxima are often met in the applications, for instance in the theory of automatic control. Numerous results on existence and uniqueness, asymptotic stability as well as numerical solutions have been obtained. To name a few, we refer the reader to [BainovHristova, Bainov, Georgiev], [Zhang] and the references therein.

    The main goal of the presented paper is to study a second order functional-differential equations with maxima, of mixed type, using the theory of weakly Picard operators. The theory of Picard operators was introduced by I. A. Rus (see [Rus93] and [Rus]) to study problems related to fixed point theory. This abstract approach is used by many mathematicians and it seemed to be a very useful and powerful method in the study of integral equations and inequalities, ordinary and partial differential equations (existence, uniqueness, differentiability of the solutions), etc.

    We consider the following functional-differential equation

    x′′(t)=f(t,x(t),maxth1ξt+h2x(ξ)),t[a,b]-x^{\prime\prime}(t)=f(t,x(t),\underset{t-h_{1}\leq\xi\leq t+h_{2}}{\max}x(\xi)),\ t\in[a,b] (1.1)

    with the ”boundary” conditions

    {x(t)=φ(t),t[ah1,a],x(t)=ψ(t),t[b,b+h2].\left\{\begin{array}[c]{l}x(t)=\varphi(t),\ t\in[a-h_{1},a],\\ x(t)=\psi(t),\ t\in[b,b+h_{2}].\end{array}\right. (1.2)

    The novelty of this paper lies in the fact that ’maxima’ is taken on interval [th1,t+h2][t-h_{1},t+h_{2}], where h1,h2>0h_{1},\ h_{2}>0. Our results extend and improve corresponding theorems in the existing literature (see, e.g. [Rus02], [OtrocolEJQTDE, OtrocolRus, OtrocolRusFPT]). Also, in the end an extremal principle for the solution is given.

    We suppose that:

    • (C1)

      h1,h2,ah_{1},h_{2},\ a\ and b,a<b,h1>0,h2>0;b\in\mathbb{R},\ a<b,\ h_{1}>0,\ h_{2}>0;

    • (C2)

      fC([a,b]×2,)f\in C([a,b]\times\mathbb{R}^{2},\mathbb{R});

    • (C3)

      there exists Lf>0L_{f}>0 such that

      |f(t,u1,u2)f(t,v1,v2)|Lfmaxi=1,2|uivi|,\left|f(t,u_{1},u_{2})-f(t,v_{1},v_{2})\right|\leq L_{f}\underset{i=1,2}{\max}\left|u_{i}-vi\right|,

      for all t[a,b]t\in[a,b] and ui,vi,i=1,2;u_{i},v_{i}\in\mathbb{R},i=1,2;

    • (C4)

      φC([ah1,a],)\varphi\in C([a-h_{1},a],\mathbb{R}) and ψC([b,b+h2],).\psi\in C([b,b+h_{2}],\mathbb{R}).

    Let GG be the Green function of the following problem

    x′′=χ,x(a)=0,x(b)=0,χC[a,b].-x^{\prime\prime}=\chi,\ x(a)=0,\ x(b)=0,\ \chi\in C[a,b].

    The problem (1.1)–(1.2), xC[ah1,b+h2]C2[a,b]x\in C[a-h_{1},b+h_{2}]\cap C^{2}[a,b] is equivalent with the following fixed point equation

    x(t)={φ(t),t[ah1,a],w(φ,ψ)(t)++abG(t,s)f(s,x(s),maxsh1ξs+h2x(ξ))𝑑s,t[a,b],ψ(t),t[b,b+h2],x(t)=\left\{\begin{array}[c]{l}\varphi(t),\ t\in[a-h_{1},a],\\ w(\varphi,\psi)(t)+\\ \quad+\int_{a}^{b}G(t,s)f(s,x(s),\underset{s-h_{1}\leq\xi\leq s+h_{2}}{\max}x(\xi))ds,\ t\in[a,b],\\ \psi(t),\ t\in[b,b+h_{2}],\end{array}\right. (1.3)

    xC[ah1,b+h2],x\in C[a-h_{1},b+h_{2}], where

    w(φ,ψ)(t):=tabaψ(b)+btbaφ(a).w(\varphi,\psi)(t):=\frac{t-a}{b-a}\psi(b)+\frac{b-t}{b-a}\varphi(a).

    The equation (1.1) is equivalent with

    x(t)={x(t),t[ah1,a],w(x|[ah1,a],x|[b,b+h2])(t)++abG(t,s)f(s,x(s),maxsh1ξs+h2x(ξ))𝑑s,t[a,b],x(t),t[b,b+h2],x(t)=\left\{\begin{array}[c]{l}x(t),\ t\in[a-h_{1},a],\\ w(x|_{[a-h_{1},a]},x|_{[b,b+h_{2}]})(t)+\\ \quad+\int_{a}^{b}G(t,s)f(s,x(s),\underset{s-h_{1}\leq\xi\leq s+h_{2}}{\max}x(\xi))ds,\ t\in[a,b],\\ x(t),\ t\in[b,b+h_{2}],\end{array}\right. (1.4)

    xC[ah1,b+h2].x\in C[a-h_{1},b+h_{2}].

    In what follow we consider the operators Bf,Ef:C[ah1,b+h2]C[ah1,b+h2]B_{f},E_{f}:C[a-h_{1},b+h_{2}]\rightarrow C[a-h_{1},b+h_{2}] defined by

    Bf(x)(t):={φ(t),t[ah1,a],w(φ,ψ)(t)++abG(t,s)f(s,x(s),maxsh1ξs+h2x(ξ))𝑑s,t[a,b],ψ(t),t[b,b+h2],B_{f}(x)(t):=\left\{\begin{array}[c]{l}\varphi(t),\ t\in[a-h_{1},a],\\ w(\varphi,\psi)(t)+\\ \quad+\int_{a}^{b}G(t,s)f(s,x(s),\underset{s-h_{1}\leq\xi\leq s+h_{2}}{\max}x(\xi))ds,\ t\in[a,b],\\ \psi(t),\ t\in[b,b+h_{2}],\end{array}\right.

    and

    Ef(x)(t):={x(t),t[ah1,a],w(x|[ah1,a],x|[b,b+h2])(t)++abG(t,s)f(s,x(s),maxsh1ξs+h2x(ξ))𝑑s,t[a,b],x(t),t[b,b+h2].E_{f}(x)(t):=\left\{\begin{array}[c]{l}x(t),\ t\in[a-h_{1},a],\\ w(x|_{[a-h_{1},a]},x|_{[b,b+h_{2}]})(t)+\\ \quad+\int_{a}^{b}G(t,s)f(s,x(s),\underset{s-h_{1}\leq\xi\leq s+h_{2}}{\max}x(\xi))ds,\ t\in[a,b],\\ x(t),\ t\in[b,b+h_{2}].\end{array}\right.

    Let X:=C[ah1,b+h2]X:=C[a-h_{1},b+h_{2}] and Xφ,ψ:={xX|x|[ah1,a]=φ,x|[b,b+h2]=ψ}X_{\varphi,\psi}:=\{x\in X|\ x|_{[a-h_{1},a]}=\varphi,\ x|_{[b,b+h_{2}]}=\psi\}. It is clear that

    X=φC[ah1,a]ψC[b,b+h2]Xφ,ψX=\underset{\begin{array}[c]{c}\varphi\in C[a-h_{1},a]\\ \psi\in C[b,b+h_{2}]\end{array}}{\cup}X_{\varphi,\psi}

    is a partition of X.X.\ We have

    Lemma 1.1.

    We suppose that the conditions (C1),(C2)(C_{1}),\ (C_{2}) and (C4)(C_{4}) are satisfied. Then

    • (a)

      Bf(X)Xφ,ψB_{f}(X)\subset X_{\varphi,\psi} and Bf(Xφ,ψ)Xφ,ψ;B_{f}(X_{\varphi,\psi})\subset X_{\varphi,\psi};

    • (b)

      Bf|Xφ,ψ=Ef|Xφ,ψ.B_{f}|_{X_{\varphi,\psi}}=E_{f}|_{X_{\varphi,\psi}}.

    In this paper we shall prove that, if LfL_{f} is small enough, then the operator EfE_{f} is weakly Picard operator and we shall study the equation (1.1) in the terms of this operator.

    2. Picard and Weakly Picard operators

    In this paper we use the terminologies and notations from [Rus, Rus02, Rus93]. Let us recall now some essential definitions and fundamental results.

    Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. We denote byA0=1X,A1=A,An+1:=AAn,n\;A^{0}=1_{X},\;A^{1}=A,\;A^{n+1}:=A\circ A^{n},n\in\mathbb{N} the iterates of the operator AA;

    We also use the following notations: FA:={xXA(x)=x}F_{A}:=\{x\in X\mid A(x)=x\} - the fixed point set of AA;

    I(A):={YXA(Y)Y,Y}I(A):=\{Y\subset X\mid A(Y)\subset Y,Y\neq\emptyset\} - the family of the nonempty invariant subset of AA;

    We begin with the definitions of a Picard and weakly Picard operator.

    Definition 2.1.

    Let (X,d)(X,d) be a metric space. An operator A:XXA\colon X\rightarrow X is a Picard operator (PO) if there exists xXx^{\ast}\in X such that:

    1. (i)

      FA={x};F_{A}=\{x^{\ast}\};

    2. (ii)

      the sequence (An(x0))n(A^{n}(x_{0}))_{n\in\mathbb{N}} converges to xx^{\ast} for all x0Xx_{0}\in X.

    Definition 2.2.

    Let (X,d)(X,d) be a metric space. An operator A:XXA\colon X\rightarrow X is a weakly Picard operator (WPO) if the sequence (An(x))n(A^{n}(x))_{n\in\mathbb{N}} converges for all xXx\in X, and its limit (which may depend on xx) is a fixed point of AA.

    Definition 2.3.

    If AA is weakly Picard operator then we consider the operator AA^{\infty} defined by

    A:XX,A(x):=limnAn(x).A^{\infty}\colon X\rightarrow X,\ A^{\infty}(x):=\underset{n\rightarrow\infty}{\lim}A^{n}(x).
    Remark 2.1.

    It is clear that A(X)=FA={xXA(x)=x}.A^{\infty}(X)=F_{A}=\{x\in X\mid A(x)=x\}.

    The following results are very useful in the sequel.

    Lemma 2.1.

    Let (X,d,)(X,d,\leq) be an ordered metric space and A:XXA\colon X\rightarrow X an operator. We suppose that AA is WPO and increasing. Then, the operator AA^{\infty} is increasing.

    Lemma 2.2.

    (Abstract Gronwall lemma) Let (X,d,)(X,d,\leq) be an ordered metric space and A:XXA\colon X\rightarrow X an operator. We suppose that AA is WPO and increasing. Then:

    • (a)

      xA(x)xA(x);x\leq A(x)\Rightarrow x\leq A^{\infty}(x);

    • (b)

      xA(x)xA(x).x\geq A(x)\Rightarrow x\geq A^{\infty}(x).

    Lemma 2.3.

    (Abstract comparison lemma) Let (X,d,)(X,d,\leq) an ordered metric space and A,B,C:XXA,B,C\colon X\rightarrow X be such that:

    • (i)

      the operators A,B,CA,B,C are WPOs;

    • (ii)

      ABC;A\leq B\leq C;

    • (iii)

      the operator BB is increasing.

    Then xyzx\leq y\leq z implies that A(x)B(y)C(z).A^{\infty}(x)\leq B^{\infty}(y)\leq C^{\infty}(z).

    Theorem 2.1.

    Let (X,d)(X,d) be a complete metric space and A,B:XXA,B\colon X\rightarrow X two operators. We suppose that

    • (i)

      the operator AA is an α\alpha-contraction;

    • (ii)

      FB;F_{B}\neq\emptyset;

    • (iii)

      there exists η>0\eta>0 such that

      d(A(x),B(x))η,xX.d(A(x),B(x))\leq\eta,\ \forall x\in X.

    Then, if FA={xA}F_{A}=\{x_{A}^{\ast}\} and xBFB,x_{B}^{\ast}\in F_{B}, we have

    d(xA,xB)η1α.d(x_{A}^{\ast},x_{B}^{\ast})\leq\frac{\eta}{1-\alpha}.

    Another important notion is the following

    Definition 2.4.

    Let AA be a weakly Picard operator and c>0.c>0. The operator AA\ is cc-weakly Picard operator if

    d(x,A(x))cd(x,A(x)),xX.d(x,A^{\infty}(x))\leq cd(x,A(x)),\ \forall x\in X.

    For the cc-POs and cc-WPOs we have the following lemma.

    Theorem 2.2.

    Let (X,d)(X,d) be a metric space and Ai:XX,i=1,2.A_{i}\colon X\rightarrow X,\ i=1,2. Suppose that

    • (i)

      the operator AiA_{i} is cic_{i}-WPOs, i=1,2;i\!=\!1,2;

    • (ii)

      there exists η>0\eta>0 such that

      d(A1(x),A2(x))η,xX.d(A_{1}(x),A_{2}(x))\leq\eta,\ \forall x\in X.

    Then H(FA1,FA2)ηmax(c1,c2).H(F_{A_{1}},F_{A_{2}})\leq\eta\max(c_{1},c_{2}).

    Example 2.1.

    Let (X,d)(X,d) be a complete metric space and A:XXA\colon X\rightarrow X an α\alpha-contraction. Then AA is 11α\frac{1}{1-\alpha}-PO.

    Example 2.2.

    Let (X,d)(X,d) be a complete metric space and A:XXA:X\rightarrow X continuous and α\alpha-graphic contraction. Then AA is 11α\frac{1}{1-\alpha}-WPO.

    For more details on WPOs theory see [Rus], [Rus93] and [RusPetrusel].

    3. Existence and uniqueness

    Our first result is the following

    Theorem 3.1.

    We suppose that:

    • (a)

      the conditions (C1)(C_{1})(C4)(C_{4}) are satisfied;

    • (C5)

      Lf8(ba)2<1\frac{L_{f}}{8}(b-a)^{2}<1.

    Then the problem (1.1)–(1.2) has a unique solution which is the uniform limit of the successive approximations.

    Proof.

    Consider the Banach space (C[ah1,b+h2],)(C[a-h_{1},b+h_{2}],\left\|\cdot\right\|) where \left\|\cdot\right\| is the Chebyshev norm, :=maxah1tb+h2|x(t)|.\left\|\cdot\right\|:=\underset{a-h_{1}\leq t\leq b+h_{2}}{\max}\left|x(t)\right|.

    The problem (1.1)–(1.2) is equivalent with the fixed point equation

    Bf(x)=x,xC[ah1,b+h2].B_{f}(x)=x,\ x\in C[a-h_{1},b+h_{2}].

    From the condition (C3)(C_{3}) we have, for t[a,b]t\in[a,b]

    |Bf(x)(t)Bf(y)(t)|\displaystyle\left|B_{f}(x)(t)-B_{f}(y)(t)\right|\leq
    LfabG(t,s)[max|x(s)y(s)|,|maxah1ξb+h2x(ξ)maxy(ξ)ah1ξb+h2|]𝑑s\displaystyle\leq L_{f}\int_{a}^{b}G(t,s)\left[\max\left|x(s)-y(s)\right|,\bigg|\underset{a-h_{1}\leq\xi\leq b+h_{2}}{\max}x(\xi)-\underset{a-h_{1}\leq\xi\leq b+h_{2}}{\max y(\xi)}\bigg|\right]ds
    LfabG(t,s)maxah1ξb+h2|x(s)y(s)|𝑑s\displaystyle\leq L_{f}\int_{a}^{b}G(t,s)\underset{a-h_{1}\leq\xi\leq b+h_{2}}{\max}\left|x(s)-y(s)\right|ds\leq
    Lf8(ba)2xy.\displaystyle\leq\frac{L_{f}}{8}(b-a)^{2}\left\|x-y\right\|.

    This implies that BfB_{f} is an α\alpha-contraction, with α=Lf8(ba)2.\alpha=\frac{L_{f}}{8}(b-a)^{2}. The proof follows from the contraction principle. ∎

    Remark 3.1.

    From the proof of Theorem 3.1, it follows that the operator BfB_{f} is PO. Since

    Bf|Xφ,ψ=Ef|Xφ,ψB_{f}|_{X_{\varphi,\psi}}=E_{f}|_{X_{\varphi,\psi}}

    and

    X:=C[ah1,b+h2]=φ,ψXφ,ψ,Ef(Xφ,ψ)Xφ,ψX:=C[a-h_{1},b+h_{2}]=\underset{\varphi,\psi}{\cup}X_{\varphi,\psi},\ E_{f}(X_{\varphi,\psi})\subset X_{\varphi,\psi}

    hence, the operator EfE_{f} is WPO and

    FEfXφ,ψ={xφ,ψ},φC[ah1,a],ψC[b,b+h2],F_{E_{f}}\cap X_{\varphi,\psi}=\{x_{\varphi,\psi}^{\ast}\},\forall\varphi\in C[a-h_{1},a],\ \forall\psi\in C[b,b+h_{2}],

    where xφ,ψx_{\varphi,\psi}^{\ast} is the unique solution of the problem (1.1)–(1.2).

    Remark 3.2.

    EfE_{f} is α\alpha-graphic contraction, i.e.

    Ef2(x)Ef(x)αxEf(x),xC[ah1,b+h2].\left\|E_{f}^{2}(x)-E_{f}(x)\right\|\leq\alpha\left\|x-E_{f}(x)\right\|,\ \forall x\in C[a-h_{1},b+h_{2}].

    4. Inequalities of Čaplygin type

    Now we consider the operators EfE_{f} and BfB_{f} on the ordered Banach space (C[ah1,b+h2],,).(C[a-h_{1},b+h_{2}],\left\|\cdot\right\|,\leq).\ We have

    Theorem 4.1.

    We suppose that:

    • (a)

      the conditions (C1)(C4)(C_{1})-(C_{4}) are satisfied;

    • (b)

      Lf8(ba)2<1\frac{L_{f}}{8}(b-a)^{2}<1;

    • (c)

      f(t,,):22f(t,\cdot,\cdot):\mathbb{R}^{2}\rightarrow\mathbb{R}^{2} is increasing, t[a,b].\forall t\in[a,b].

    Let xx be a solution of equation (1.1) and yy a solution of the inequality

    y′′(t)f(t,y(t),maxth1ξt+h2y(ξ)),t[a,b].-y^{\prime\prime}(t)\leq f(t,y(t),\underset{t-h_{1}\leq\xi\leq t+h_{2}}{\max}y(\xi)),\ t\in[a,b].

    Then if

    y(t)x(t),t[ah1,a][b,b+h2] we obtain that yx.y(t)\leq x(t),\forall t\in[a-h_{1},a]\cup[b,b+h_{2}]\text{ we obtain that }y\leq x.
    Proof.

    Let us consider the operator w~:C[ah1,b+h2]C[ah1,b+h2]\widetilde{w}:C[a-h_{1},b+h_{2}]\rightarrow C[a-h_{1},b+h_{2}] defined by

    w~(z)(t):={z(t),t[ah1,a],w(z|[ah1,a],z|[b,b+h2])(t),t[a,b],z(t),t[b,b+h2].\widetilde{w}(z)(t):=\left\{\begin{array}[c]{l}z(t),\ t\in[a-h_{1},a],\\ w(z|_{[a-h_{1},a]},z|_{[b,b+h_{2}]})(t),\ t\in[a,b],\\ z(t),\ t\in[b,b+h_{2}].\end{array}\right.

    First of all we remark that

    w(y|[ah1,a],y|[b,b+h2])w(x|[ah1,a],x|[b,b+h2])w(y|_{[a-h_{1},a]},y|_{[b,b+h_{2}]})\leq w(x|_{[a-h_{1},a]},x|_{[b,b+h_{2}]})

    and

    w~(y)w~(x).\widetilde{w}(y)\leq\widetilde{w}(x).

    In the terms of the operator Ef,E_{f}, we have

    x=Ef(x) and yEf(y).x=E_{f}(x)\text{ and }y\leq E_{f}(y).

    From the conditions (C1),(C2)(C_{1}),(C_{2}) and (C3)(C_{3}) follows that the operator EfE_{f} is WPO. Also, from condition (c) we have that EfE_{f} is an increasing operator. Applying Lemma 2.1, we have that the operator EfE_{f}^{\infty} is increasing. From Theorem 3.1 we have that Ef(Xφ,ψ)Xφ,ψ,φ,ψ.Ef|Xφ,ψE_{f}(X_{\varphi,\psi})\subset X_{\varphi,\psi},\ \forall\varphi,\psi\in\mathbb{R}.\ E_{f}|_{X_{\varphi,\psi}} is a contraction and since w~(z)Xφ,ψ\widetilde{w}(z)\in X_{\varphi,\psi} then

    Ef(w~)=Ef(y),yXφ,ψ.E_{f}^{\infty}(\widetilde{w})=E_{f}^{\infty}(y),\ \forall y\in X_{\varphi,\psi}.

    Let yEf(y)y\leq E_{f}(y), since EfE_{f} is increasing, from the Gronwall lemma (Lemma 2.2) we get yEf(y).y\leq E_{f}^{\infty}(y). Also y,w~(y)Xw(y)y,\widetilde{w}(y)\in X_{w(y)}, so Ef(y)=Ef(w~(y))E_{f}^{\infty}(y)=E_{f}^{\infty}(\widetilde{w}(y)). But w(y)w(x),Efw(y)\leq w(x),\ E_{f}^{\infty} is increasing and Ef(w~(x))=Ef(x)=x.E_{f}^{\infty}(\widetilde{w}(x))=E_{f}^{\infty}(x)=x. So

    yEf(y)=Ef(w~(y))Ef(w~(x))=Ef(x)=x.y\leq E_{f}^{\infty}(y)=E_{f}^{\infty}(\widetilde{w}(y))\leq E_{f}^{\infty}(\widetilde{w}(x))=E_{f}^{\infty}(x)=x.

    5. Data dependence: monotony

    In this section we study the monotony of the solution of the problem (1.1)–(1.2) with respect to φ,ψ\varphi,\ \psi and ff.

    Theorem 5.1.

    Let fiC([a,b]×2,),i=1,2,3,f_{i}\in C([a,b]\times\mathbb{R}^{2},\mathbb{R}),i=1,2,3, be as in Theorem 3.1. We suppose that:

    • (i)

      f1f2f3;f_{1}\leq f_{2}\leq f_{3};

    • (ii)

      f2(t,,,):22f_{2}(t,\cdot,\cdot,\cdot):\mathbb{R}^{2}\rightarrow\mathbb{R}^{2} is monotone increasing;

    Let xix_{i} be a solution of the equation

    xi′′(t)=fi(t,x(t),maxth1ξt+h2x(ξ)),t[a,b] and i=1,2,3.-x_{i}^{\prime\prime}(t)=f_{i}(t,x(t),\underset{t-h_{1}\leq\xi\leq t+h_{2}}{\max}x(\xi)),\ t\in[a,b]\text{ and }i=1,2,3.

    Then, x1(t)x2(t)x3(t),t[ah1,a][b,b+h2]x_{1}(t)\leq x_{2}(t)\leq x_{3}(t),\ \forall t\in[a-h_{1},a]\cup[b,b+h_{2}], implies that x1x2x3x_{1}\leq x_{2}\leq x_{3}, i.e. the unique solution of the problem (1.1)–(1.2) is increasing with respect to f,φf,\ \varphi and ψ.\psi.

    Proof.

    From Theorem 3.1, the operators Efi,i=1,2,3,E_{f_{i}},i=1,2,3,\ are WPOs. From the condition (ii) the operator Ef2E_{f_{2}} is monotone increasing. From the condition (i) it follows that

    Ef1Ef2Ef3.E_{f_{1}}\leq E_{f_{2}}\leq E_{f_{3}}.

    On the other hand we remark that

    w~(x1)w~(x2)w~(x3)\widetilde{w}(x_{1})\leq\widetilde{w}(x_{2})\leq\widetilde{w}(x_{3})

    and

    xi=Efi(w~(xi)),i=1,2,3.x_{i}=E_{f_{i}}^{\infty}(\widetilde{w}(x_{i})),\ i=1,2,3.

    So, the proof follows from Lemma 2.3. ∎

    6. Data dependence: continuity

    Consider the boundary value problem (1.1)–(1.2) and suppose the conditions of the Theorem 3.1 are satisfied. Denote by x(;φ,ψ,f),x^{\ast}(\cdot;\varphi,\psi,f),\ the solution of this problem. We state the following result:

    Theorem 6.1.

    Let φi,ψi,fi,i=1,2\varphi_{i},\psi_{i},f_{i},i=1,2 be as in the Theorem 3.1. Furthermore, we suppose that there exists ηi>0,i=1,2\eta_{i}>0,i=1,2\ such that

    1. (i)

      |φ1(t)φ2(t)|η1,t[ah1,a]\left|\varphi_{1}(t)-\varphi_{2}(t)\right|\leq\eta_{1},\ \forall t\in[a-h_{1},a] and |ψ1(t)ψ2(t)|η1,t[b,b+h2]\left|\psi_{1}(t)-\psi_{2}(t)\right|\leq\eta_{1},\ \forall t\in[b,b+h_{2}];

    2. (ii)

      |f1(t,u1,u2)f2(t,u1,u2)|η2,tC[a,b],u1,u2.\left|f_{1}(t,u_{1},u_{2})-f_{2}(t,u_{1},u_{2})\right|\leq\eta_{2},\forall t\in C[a,b],u_{1},u_{2}\in\mathbb{R}.

    Then

    x1(t;φ1,ψ1,f1)x2(t;φ2,ψ2,f2)8η1+(ba)2η28Lf(ba)2,\left\|x_{1}^{\ast}(t;\varphi_{1},\psi_{1},f_{1})-x_{2}^{\ast}(t;\varphi_{2},\psi_{2},f_{2})\right\|\leq\frac{8\eta_{1}+(b-a)^{2}\eta_{2}}{8-L_{f}(b-a)^{2}},

    where xi(t;φi,ψi,fi)x_{i}^{\ast}(t;\varphi_{i},\psi_{i},f_{i}) are the solution of the problem (1.1)–(1.2) with respect to φi,ψi,fi,\varphi_{i},\psi_{i},f_{i}, i=1,2,i=1,2,\ and Lf=max(Lf1,Lf2).L_{f}=\max(L_{f_{1}},L_{f_{2}}).

    Proof.

    Consider the operators Bφi,ψi,fi,i=1,2.B_{\varphi_{i},\psi_{i},f_{i}},i=1,2. From Theorem 3.1 these operators are contractions.

    Additionally

    Bφ1,ψ1,f1(x)Bφ2,ψ2,f2(x)η1+η2(ba)28,\left\|B_{\varphi_{1},\psi_{1},f_{1}}(x)-B_{\varphi_{2},\psi_{2},f_{2}}(x)\!\right\|\leq\eta_{1}+\eta_{2}\frac{(b-a)^{2}}{8},

    xC[ah1,b+h2].\forall x\in C[a-h_{1},b+h_{2}].

    Now the proof follows from Theorem 2.1, with A:=Bφ1,ψ1,f1,B=Bφ2,ψ2,f2,η=η1+η2(ba)28A:=B_{\varphi_{1},\psi_{1},f_{1}},B=B_{\varphi_{2},\psi_{2},f_{2}},\eta=\eta_{1}+\eta_{2}\frac{(b-a)^{2}}{8} and α:=Lf8(ba)2\alpha:=\frac{L_{f}}{8}(b-a)^{2} where Lf=max(Lf1,Lf2).L_{f}=\max(L_{f_{1}},L_{f_{2}}).

    In what follow we shall use the cc-WPOs techniques to give some data dependence results using Theorem 2.2.

    Theorem 6.2.

    Let f1f_{1} and f2f_{2} be as in the Theorem 3.1. Let SEf1,SEf2S_{E_{f_{1}}},S_{E_{f_{2}}} be the solution sets of system (1.1) corresponding to f1f_{1} and f2f_{2}. Suppose that there exists η>0,\eta>0, such that

    |f1(t,u1,u2)f2(t,u1,u2)|η\left|f_{1}(t,u_{1},u_{2})-f_{2}(t,u_{1},u_{2})\right|\leq\eta (6.1)

    for all t[a,b],u1,u2.t\in[a,b],u_{1},u_{2}\in\mathbb{R}.

    Then

    HC(SEf1,SEf2)(ba)2η8Lf(ba)2,H_{\left\|\cdot\right\|_{C}}(S_{E_{f_{1}}},S_{E_{f_{2}}})\leq\frac{(b-a)^{2}\eta}{8-L_{f}(b-a)^{2}},

    where Lf=max(Lf1,Lf2)L_{f}=\max(L_{f_{1}},L_{f_{2}}) and HCH_{\left\|\cdot\right\|_{C}} denotes the Pompeiu-Housdorff functional with respect to C\left\|\cdot\right\|_{C} on C[a,b].C[a,b].

    Proof.

    In the condition of Theorem 3.1, the operators Ef1E_{f_{1}} and Ef2E_{f_{2}} are c1c_{1}-WPO and c2c_{2}-weakly Picard operators.

    Let

    Xφ,ψ:={xX|x|[ah1,a]=φ,x|[b,b+h2]=ψ}.X_{\varphi,\psi}:=\{x\in X|\ x|_{[a-h_{1},a]}=\varphi,\ x|_{[b,b+h_{2}]}=\psi\}.

    It is clear that Ef1|Xφ,ψ=Bf1,Ef2|Xφ,ψ=Bf2.E_{f_{1}}|_{X_{\varphi,\psi}}=B_{f_{1}},\ E_{f_{2}}|_{X_{\varphi,\psi}}=B_{f_{2}}. Therefore,

    |Ef12(x)Ef1(x)|18Lf1(ba)2|Ef1(x)x|,\left|E_{f_{1}}^{2}(x)-E_{f_{1}}(x)\right|\leq\tfrac{1}{8}L_{f_{1}}(b-a)^{2}\left|E_{f_{1}}(x)-x\right|,
    |Ef22(x)Ef2(x)|18Lf2(ba)2|Ef2(x)x|,\left|E_{f_{2}}^{2}(x)-E_{f_{2}}(x)\right|\leq\tfrac{1}{8}L_{f_{2}}(b-a)^{2}\left|E_{f_{2}}(x)-x\right|,

    for all xC[ah1,b+h2].x\in C[a-h_{1},b+h_{2}].

    Now, choosing

    αi=18Lfi(ba)2,i=1,2,\alpha_{i}=\tfrac{1}{8}L_{f_{i}}(b-a)^{2},i=1,2,

    we get that Ef1E_{f_{1}} and Ef2E_{f_{2}} are c1c_{1}-weakly Picard operators and c2c_{2}-weakly Picard operators with c1=(1α1)1c_{1}=(1-\alpha_{1})^{-1}\ and c2=(1α2)1\ c_{2}=(1-\alpha_{2})^{-1}. From (6.1) we obtain that

    Ef1(x)Ef2(x)C(ba)2η,\left\|E_{f_{1}}(x)-E_{f_{2}}(x)\right\|_{C}\leq(b-a)^{2}\eta,

    xC[ah1,b+h2].\forall x\in C[a-h_{1},b+h_{2}]. Applying Theorem 2.2 we have that

    HC(SEf1,SEf2)(ba)2η8Lf(ba)2,H_{\left\|\cdot\right\|_{C}}(S_{E_{f_{1}}},S_{E_{f_{2}}})\leq\frac{(b-a)^{2}\eta}{8-L_{f}(b-a)^{2}},

    where Lf=max(Lf1,Lf2)L_{f}=\max(L_{f_{1}},L_{f_{2}}) and HCH_{\left\|\cdot\right\|_{C}} is the Pompeiu-Housdorff functional with respect to C\left\|\cdot\right\|_{C} on C[ah1,b+h2].C[a-h_{1},b+h_{2}].

    7. Extremal principle

    We consider the following differential equation with maxima

    x′′(t)+p(t)x(t)+q(t)maxth1ξt+h2x(ξ)=0x^{\prime\prime}(t)+p(t)x(t)+q(t)\underset{t-h_{1}\leq\xi\leq t+h_{2}}{\max}x(\xi)=0 (7.1)

    where p,qC([a,b],)p,q\in C([a,b],\mathbb{R}).

    Remark 7.1.

    The function x(t)x(t) is an eventually negative solution of equation (7.1) if and only if y(t)=x(t)y(t)=-x(t) is an eventually positive solution of the equation

    y′′(t)+p(t)y(t)+q(t)minth1ξt+h2y(ξ)=0.y^{\prime\prime}(t)+p(t)y(t)+q(t)\underset{t-h_{1}\leq\xi\leq t+h_{2}}{\min}y(\xi)=0. (7.2)

    From the above remark we see that the positive and the negative solution of equation (7.1) need to be discussed separately.

    Theorem 7.1.

    (Extremal principle) Let p(t),q(t)<0,p(t),q(t)<0, for all t]a,b[t\in]a,b[ and xx be a solution of (7.1). Then

    • (a)

      if max{x(t)|t[a,b]}=x(t0)\max\{x(t)|\ t\in[a,b]\}=x(t_{0}) and x(t0)>0x(t_{0})>0 then t0{a,b};t_{0}\in\{a,b\};

    • (b)

      if min{x(t)|t[a,b]}=x(t0)min\{x(t)|\ t\in[a,b]\}=x(t_{0}) and x(t0)<0x(t_{0})<0 then t0{a,b}.t_{0}\in\{a,b\}.

    Proof.
    • (a)

      Let t0]a,b[t_{0}\in]a,b[ be such that, x(t0)>0x(t_{0})>0 is the maximum value of t0t_{0} on [a,b][a,b]. Since xC2[a,b]x\in C^{2}[a,b] we have that x(t0)>0,x(t0)=0,x′′(t0)0x(t_{0})>0,x^{\prime}(t_{0})=0,x^{\prime\prime}(t_{0})\leq 0. From (7.1) we have

      0=x′′(t0)+p(t0)x(t0)+q(t0)maxt0h1ξt0+h2x(ξ)<0.0=x^{\prime\prime}(t_{0})+p(t_{0})x(t_{0})+q(t_{0})\underset{t_{0}-h_{1}\leq\xi\leq t_{0}+h_{2}}{\max}x(\xi)<0\text{.}

      This is a contradiction, and therefore our assumption is wrong. So t0{a,b}.t_{0}\in\{a,b\}.

    • (b)

      Let t0]a,b[t_{0}\in]a,b[ be such that, x(t0)<0x(t_{0})<0 is the minimum value of t0t_{0} on [a,b][a,b]. Since xC2[a,b]x\in C^{2}[a,b] we have that x(t0)<0,x(t0)=0,x′′(t0)0x(t_{0})<0,x^{\prime}(t_{0})=0,x^{\prime\prime}(t_{0})\geq 0. From (7.1) we have

      0=x′′(t0)+p(t0)x(t0)+q(t0)maxt0h1ξt0+h2x(ξ)>0.0=x^{\prime\prime}(t_{0})+p(t_{0})x(t_{0})+q(t_{0})\underset{t_{0}-h_{1}\leq\xi\leq t_{0}+h_{2}}{\max}x(\xi)>0\text{.}

      This is a contradiction, and therefore our assumption is wrong. So t0{a,b}.t_{0}\in\{a,b\}.

    Related Posts

    Lotka-Volterra systems with retarded argument

    Book summarySummary of the book… Book cover Contents clickableIntroduction Ch.1. Preliminaries 1.1. Process of mathematical modeling 1.1.1. Lotka-Volterra model 1.1.2.…