Posts by Diana Otrocol

Abstract

Given a function defined on a square with one curved side, we consider some Bernstein-type operators as well as their product and Boolean sum. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.

Authors

T. Catinas
(Babes Bolyai Univ.)

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Keywords

Square with curved side, Bernstein operators, contraction principle, weakly Picard operators.

Cite this paper as:

T. Catinas, D.  Otrocol, Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory, 14(2013), no. 1, pp. 97-106

PDF

About this paper

Journal

Fixed Point Theory

Publisher Name

Casa Cartii de Stiinta, Cluj-Napoca, Romania

Print ISSN

1583-5022

Online ISSN

2066-9208

MR

MR3821782

ZBL

1397.34108

Google Scholar

[1] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline, 44(2003), 555-563.

[2] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8(2003), no. 2, 159-168.

[3] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on triangle with one curved side, Mediterr. J. Math., 10(2013), 10.1007/s00009-011-0156-2, in press.

[4] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on a square with one and two curved sides, Studia Univ. Babes–Bolyai Math., 55(2010), no. 3, 51-67.

[5] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on triangle with all curved sides, Appl. Math. Comput., 218(2011), 3072-3082.

[6] G. Coman, T. Catinas, Interpolation operators on a triangle with one curved side, BIT Numerical Mathematics, 50(2010), no. 2, 243-267.

[7] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.

[8] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24(2011), no. 12, 2068-2071.

[9] I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approximation Theory, 163(2011), no. 9, 1076-1079.

[10] H. Gonska, D. Kacso, P. Pitul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.

[11] H. Gonska, P. Pitul, I. Rasa,  Over-iterates of Bernstein-Stancu operators, Calcolo, 44(2007), 117-125.

[12] H. Gonska, I. Rasa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), no. 1-2, 119-130.

[13] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approximation Theory 3(1970), 310-339.

[14] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.

[15] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, 2001.

[16] I.A. Rus, Iterates of Stancu operators, via contraction principle, Studia Univ. Babes-Bolyai Math., 47(2002), no. 4, 101-104.

[17] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.

[18] I.A. Rus, Fixed point and interpolation point set of a positive linear operator on C(D), Studia Univ. Babes–Bolyai Math., 55(2010), no. 4, 243-248.

Related Posts

Ulam stability for a delay differential equation

AbstractWe study the Ulam–Hyers stability and generalized Ulam–Hyers–Rassias stability for a delay differential equation. Some examples are given. AuthorsD. Otrocol (Tiberiu…