Articole de Tiberiu Popoviciu

Abstract

 

Autori

Cuvinte cheie

PDF

https://ictp.acad.ro/wp-content/uploads/2022/09/1932-b-Popoviciu-Bull.-Math.-Soc.-Roum.-Sci.-Asupra-polinoamelor-cari-formeaza-un-sir-Appell-II.pdf

https://www.jstor.org/stable/43769713

Citați articolul în forma

T. Popoviciu, Asupra polinoamelor cari formează un şir Appell (II), Bull. Mathematique de la Soc. Roumaine des Sciences, 33/34 (1932), pp. 22-27 (in Romanian) (nota a doua – second note).

Despre acest articol

Journal

Bull. Mathematique de la Soc. Roumaine des Sciences

Publisher Name
DOI

https://www.jstor.org/stable/43769713

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

Referințe

Lucrarea in format html

1932 b -Popoviciu- Bull. Math. Soc. Roum. Sci. - Asupra polinoamelor cari formeaza un sir Appell (II

ASUPRA POLINOAMELOR CARI FORMEAZĂ UN ȘIR APPELL 1 1 ^(1){ }^{1}1 ) de TIB. POPOVICIU

  1. In primul nostru articol publicat sub acest tiflu am căutat şiru= rile de polinoame in x :
    (1)
    cari verifică condiţiile
P 0 = 1 , P 1 , P n , P 0 = 1 , P 1 , P n , P_(0)=1,P_(1),dotsP_(n,dots)P_{0}=1, P_{1}, \ldots P_{n, \ldots}P0=1,P1,Pn,
(2) A n P n + B n P n 1 + C n P n 2 = 0 (2) A n P n + B n P n 1 + C n P n 2 = 0 {:(2)A_(n)P_(n)+B_(n)P_(n-1)+C_(n)P_(n-2)=0:}\begin{equation*} A_{n} P_{n}+B_{n} P_{n-1}+C_{n} P_{n-2}=0 \tag{2} \end{equation*}(2)AnPn+BnPn1+CnPn2=0
A n , B n , C n A n , B n , C n A_(n),B_(n),C_(n)\boldsymbol{A}_{n}, \boldsymbol{B}_{n}, \boldsymbol{C}_{n}An,Bn,Cn find polinoame in x de grade 0 , 1 , 2 0 , 1 , 2 0,1,20,1,20,1,2 respectiv.
In particular am studiat cazul când A n 0 A n 0 A_(n)!=0A_{n} \neq 0An0 pentru orice n n nnn și cazul A n = 0 A n = 0 A_(n)=0\boldsymbol{A}_{n}=0An=0 pentru orice n n nnn. Ne propunem acum a studia cazul al treilea semnalat în articolul sus=citat, când unii din A n A n A_(n)\boldsymbol{A}_{n}An sunt nuli. Observăm că e suficient, a presupune totdeauna C n 0 C n 0 C_(n)!=0C_{n} \neq 0Cn0, căci dacă am avea o con= ditic de forma C n 0 C n 0 C_(n)-=0\boldsymbol{C}_{n} \equiv 0Cn0, avem un caz particular al conditiei A n = 0 A n = 0 A_(n)=0\boldsymbol{A}_{n}=0An=0. Se poate întâmpla ca relația (3) să nu fie unică; convenim a spune că A n 0 A n 0 A_(n)!=0\boldsymbol{A}_{n} \neq 0An0 când nu există nici o relație (3) unde A n = 0 A n = 0 A_(n)=0A_{n}=0An=0. Am văzut la No. 3 al articolului precedent când aşa ceva este posibil.
Vom întrebuinta notatiile din articolul precedent, la care cetitorul este rugat a se referi.
2. Să presupunem
A n + 1 = 0 A n + 1 = 0 A_(n+1)=0A_{n+1}=0An+1=0
Rezultă imediat că putem lua
A n + 2 = A n + 3 = = A n = = 1 A n + 2 = A n + 3 = = A n = = 1 A_(n+2)=A_(n+3)=dots=A_(n)=dots=1A_{n+2}=A_{n+3}=\ldots=A_{n}=\ldots=1An+2=An+3==An==1
fără a pierde din generalitatea problemei, căci dacă A m = 0 A m = 0 A_(m)=0\boldsymbol{A}_{m}=0Am=0 sau îl putem
1 1 ^(1){ }^{1}1 ) Nota a doua. functie _ _ _ _ _ _ _ _ ____\_\_\_\_____
Formulele de recurentă stabilite la No. 4 al articolului precedent ne dau,
λ 2 = λ m m 1 λ m ( m 2 ) λ 2 = λ m m 1 λ m ( m 2 ) lambda_(2)=(lambda_(m))/(m-1-lambda_(m)(m-2))\lambda_{2}=\frac{\lambda_{m}}{m-1-\lambda_{m}(m-2)}λ2=λmm1λm(m2)
oricare at fi m 2 m 2 m >= 2m \geq 2m2. Rezultă imediaf egalitatea functie de λ n + 2 , μ n + 2 , ν n + 2 , β n + 2 λ n + 2 , μ n + 2 , ν n + 2 , β n + 2 lambda_(n+2),mu_(n+2),nu_(n+2),beta_(n+2)\lambda_{n+2}, \mu_{n+2}, \nu_{n+2}, \beta_{n+2}λn+2,μn+2,νn+2,βn+2, care se reduct
1 + λ n + 2 + a n + 2 = 0 1 + λ n + 2 + a n + 2 = 0 1+lambda_(n+2)+a_(n+2)=01+\lambda_{n+2}+a_{n+2}=01+λn+2+an+2=0
ezultă imediat egalitatea
λ n + 2 n + 1 n λ n + 2 = λ m m 1 ( m 2 ) λ n λ n + 2 n + 1 n λ n + 2 = λ m m 1 ( m 2 ) λ n (lambda_(n+2))/(n+1-nlambda_(n+2))=(lambda_(m))/(m-1-(m-2)lambda_(n))\frac{\lambda_{n+2}}{n+1-n \lambda_{n+2}}=\frac{\lambda_{m}}{m-1-(m-2) \lambda_{n}}λn+2n+1nλn+2=λmm1(m2)λn
din care
(4) λ m = ( m 1 ) λ n + 2 n + 1 + ( m n 2 ) λ n + 2 (4) λ m = ( m 1 ) λ n + 2 n + 1 + ( m n 2 ) λ n + 2 {:(4)lambda_(m)=((m-1)lambda_(n+2))/(n+1+(m-n-2)lambda_(n+2)):}\begin{equation*} \lambda_{m}=\frac{(m-1) \lambda_{n+2}}{n+1+(m-n-2) \lambda_{n+2}} \tag{4} \end{equation*}(4)λm=(m1)λn+2n+1+(mn2)λn+2
din
λ m λ ^ n + 2 = μ m μ n + 2 = v m v n + 2 λ m λ ^ n + 2 = μ m μ n + 2 = v m v n + 2 (lambda_(m))/( hat(lambda)_(n+2))=(mu_(m))/(mu_(n)+2)=(v_(m))/(v_(n+2))\frac{\lambda_{m}}{\hat{\lambda}_{n+2}}=\frac{\mu_{m}}{\mu_{n}+2}=\frac{v_{m}}{v_{n+2}}λmλ^n+2=μmμn+2=vmvn+2
deducem
(5) μ m = ( m 1 ) μ n + 2 n + 1 + ( m n 2 ) λ n + 2 , v m = ( m 1 ) v ϵ + 2 n + 1 + ( m n 2 ) λ n + 2 (5) μ m = ( m 1 ) μ n + 2 n + 1 + ( m n 2 ) λ n + 2 , v m = ( m 1 ) v ϵ + 2 n + 1 + ( m n 2 ) λ n + 2 {:(5)mu_(m)=((m-1)mu_(n+2))/(n+1+(m-n-2)lambda_(n+2))","v_(m)=((m-1)v_(epsilon+2))/(n+1+(m-n-2)lambda_(n+2)):}\begin{equation*} \mu_{m}=\frac{(m-1) \mu_{n+2}}{n+1+(m-n-2) \lambda_{n+2}}, v_{m}=\frac{(m-1) v_{\epsilon+2}}{n+1+(m-n-2) \lambda_{n+2}} \tag{5} \end{equation*}(5)μm=(m1)μn+2n+1+(mn2)λn+2,vm=(m1)vϵ+2n+1+(mn2)λn+2
(6)
a m = n + 1 + ( 2 m n 3 ) λ n + 2 n + 1 + ( m n 2 ) λ n + 2 a m = n + 1 + ( 2 m n 3 ) λ n + 2 n + 1 + ( m n 2 ) λ n + 2 a_(m)=-(n+1+(2m-n-3)lambda_(n)+2)/(n+1+(m-n-2)lambda_(n)+2)a_{m}=-\frac{n+1+(2 m-n-3) \lambda_{n}+2}{n+1+(m-n-2) \lambda_{n}+2}am=n+1+(2mn3)λn+2n+1+(mn2)λn+2
Avem apoi relația de recurență: β m [ ( n + 1 ) + ( m n 2 ) λ n + 2 ] β m 1 | n + 1 + ( m n 3 ) λ n + 2 | + μ n + 2 = 0 β m ( n + 1 ) + ( m n 2 ) λ n + 2 β m 1 n + 1 + ( m n 3 ) λ n + 2 + μ n + 2 = 0 beta_(m)[(n+1)+(m-n-2)lambda_(n+2)]-beta_(m-1)|n+1+(m-n-3)lambda_(n+2)|+mu_(n+2)=0\beta_{m}\left[(n+1)+(m-n-2) \lambda_{n+2}\right]-\beta_{m-1}\left|n+1+(m-n-3) \lambda_{n+2}\right|+\mu_{n+2}=0βm[(n+1)+(mn2)λn+2]βm1|n+1+(mn3)λn+2|+μn+2=0 de unde
(7) β m = ( n + 1 ) β n + 2 ( m n 2 ) μ n + 2 n + 1 + ( m n 2 ) λ n + 2 (7) β m = ( n + 1 ) β n + 2 ( m n 2 ) μ n + 2 n + 1 + ( m n 2 ) λ n + 2 {:(7)beta_(m)=((n+1)beta_(n+2)-(m-n-2)mu_(n+2))/(n+1+(m-n-2)lambda_(n+2)):}\begin{equation*} \beta_{m}=\frac{(n+1) \beta_{n+2}-(m-n-2) \mu_{n+2}}{n+1+(m-n-2) \lambda_{n+2}} \tag{7} \end{equation*}(7)βm=(n+1)βn+2(mn2)μn+2n+1+(mn2)λn+2
Pentru a resolva complet problema rănâne să se determine λ m , μ m λ m , μ m lambda_(m),mu_(m)\lambda_{m}, \mu_{m}λm,μm, v m , p m , α m v m , p m , α m v_(m),p_(m),alpha_(m)v_{m}, p_{m}, \alpha_{m}vm,pm,αm pentru m n + 2 m n + 2 m <= n+2m \leq n+2mn+2.
Am văzut însă că
P n = ( x + a ) k ( x + b ) n k P n = ( x + a ) k ( x + b ) n k P_(n)=(x+a)^(k)(x+b)^(n-k)P_{n}=(\mathrm{x}+a)^{k}(\mathrm{x}+b)^{n-k}Pn=(x+a)k(x+b)nk
Putem scrie pentru simplificare
P n = r n k ( x + b 1 ) k P n = r n k x + b 1 k P_(n)=r^(n-k)(x+b_(1))^(k)P_{n}=\mathrm{r}^{n-k}\left(\mathrm{x}+b_{1}\right)^{k}Pn=rnk(x+b1)k
şi rezultatul general se va obține substituind lui x , b 1 , pc x + b , a b x , b 1 , pc x + b , a b x,b_(1),pcx+b,a-bx, b_{1}, \mathrm{pc} x+b, a-bx,b1,pcx+b,ab res= pectiv. Nu se pierde astfel nimic din generalitate, căci
d d ( x + b ) = d d x d d ( x + b ) = d d x (d)/(d(x+b))=(d)/(dx)\frac{d}{d(x+b)}=\frac{d}{d x}dd(x+b)=ddx
caracterul polinoamelor se mentine deci prin această simplificare
3. Fie k = 0 k = 0 k=0k=0k=0, deci
P n = x n P n = x n P_(n)=x^(n)P_{n}=\mathrm{x}^{n}Pn=xn
polinoamele P i , i < n P i , i < n P_(i,)i < n\boldsymbol{P}_{i,} \boldsymbol{i}<\boldsymbol{n}Pi,i<n, sunt determinate, constantele λ m , μ m , ν m , α m , β m cu = λ m , μ m , ν m , α m , β m cu = lambda_(m),mu_(m),nu_(m),alpha_(m),beta_(m)cu=\lambda_{m}, \mu_{m}, \nu_{m}, \alpha_{m}, \beta_{m} \mathrm{cu}=λm,μm,νm,αm,βmcu= noscute pentru m n + 1 m n + 1 m <= n+1m \leq n+1mn+1.
Să punem
P n + 1 = x n + 1 + c , P n + 2 = x n + 2 + ( n + 2 ) c x + c 1 P n + 1 = x n + 1 + c , P n + 2 = x n + 2 + ( n + 2 ) c x + c 1 P_(n+1)=x^(n+1)+c,P_(n+2)=x^(n+2)+(n+2)cx+c_(1)P_{n+1}=\mathrm{x}^{n+1}+c, P_{n+2}=\mathrm{x}^{n+2}+(n+2) c \mathrm{x}+c_{1}Pn+1=xn+1+c,Pn+2=xn+2+(n+2)cx+c1
c. c 1 c 1 c_(1)\boldsymbol{c}_{1}c1 fiind două constante. Se vede că pentru a avea un caz interesant, nereductibil la cele studiate până acum, trebue să presupunem c 0 c 0 c!=0c \neq 0c0.
Aven atunci
( n + 2 ) c x + c 1 + c B n + 2 = 0 x 2 + x B n + 2 + C + 2 = 0 ( n + 2 ) c x + c 1 + c B n + 2 = 0 x 2 + x B n + 2 + C + 2 = 0 {:[(n+2)cx+c_(1)+cB_(n+2)=0],[x^(2)+xB_(n+2)+C+2=0]:}\begin{gathered} (n+2) c \mathrm{x}+c_{1}+c B_{n+2}=0 \\ \mathrm{x}^{2}+\mathrm{x} B_{n+2}+C+2=0 \end{gathered}(n+2)cx+c1+cBn+2=0x2+xBn+2+C+2=0
şi se scoate imediat
α n + 2 = ( n + 2 ) λ n + 2 = n + 1 β n + 2 = c 1 c = σ μ n + 2 = σ v n + 2 = 0 α n + 2 = ( n + 2 ) λ n + 2 = n + 1 β n + 2 = c 1 c = σ μ n + 2 = σ v n + 2 = 0 {:[alpha_(n+2)=-(n+2),lambda_(n+2)=n+1],[beta_(n+2)=-(c_(1))/(c)=sigma,mu_(n+2)=-sigma],[v_(n+2)=0]:}\begin{array}{ll} \alpha_{n+2}=-(n+2) & \lambda_{n+2}=n+1 \\ \beta_{n+2}=-\frac{c_{1}}{c}=\sigma & \mu_{n+2}=-\sigma \\ v_{n+2}=0 \end{array}αn+2=(n+2)λn+2=n+1βn+2=c1c=σμn+2=σvn+2=0
Formulele (4), (5), (6), (7) ne dau acum pc λ m , μ m , ν m , α m , β m pc λ m , μ m , ν m , α m , β m pclambda_(m),mu_(m),nu_(m),alpha_(m),beta_(m)\mathrm{pc} \lambda_{m}, \mu_{m}, \nu_{m}, \alpha_{m}, \beta_{m}pcλm,μm,νm,αm,βm şi toate relatiile (3) sunt determinate.
Putem scric în cazul din faţă
P m = x m + Q m n 1 P m = x m + Q m n 1 P_(m)=x^(m)+Q_(m-n-1)\boldsymbol{P}_{m}=\mathbf{x}^{m}+Q_{m-n-1}Pm=xm+Qmn1
unde şirul de polinoame
(8) Q 0 = c , Q 1 , Q 2 , Q s (8) Q 0 = c , Q 1 , Q 2 , Q s {:(8)Q_(0)=c","Q_(1)","Q_(2)","dotsQ_(s)dots:}\begin{equation*} Q_{0}=c, Q_{1}, Q_{2}, \ldots Q_{s} \ldots \tag{8} \end{equation*}(8)Q0=c,Q1,Q2,Qs
verifică relatiile
(9) d Q m n 1 d x = m Q m n 2 Q m n 1 + B m Q m n 2 + C m Q m n 3 = 0 (9) d Q m n 1 d x = m Q m n 2 Q m n 1 + B m Q m n 2 + C m Q m n 3 = 0 {:[(9)(dQ_(m-n-1))/(dx)=mQ_(m-n-2)],[Q_(m-n-1)+B_(m)Q_(m-n-2)+C_(m)Q_(m-n-3)=0]:}\begin{gather*} \frac{d Q_{m-n-1}}{d \mathrm{x}}=m Q_{m-n-2} \tag{9}\\ Q_{m-n-1}+B_{m} Q_{m-n-2}+C_{m} Q_{m-n-3}=0 \end{gather*}(9)dQmn1dx=mQmn2Qmn1+BmQmn2+CmQmn3=0
Deci şirul de polinoame :
(10) R 0 = c , R 1 , R s , (10) R 0 = c , R 1 , R s , {:(10)R_(0)=c","R_(1)","dotsR_(s)","dots:}\begin{equation*} R_{0}=c, R_{1}, \ldots R_{s}, \ldots \tag{10} \end{equation*}(10)R0=c,R1,Rs,
unde
Q s = ( n + s + 1 s ) R s Q s = ( n + s + 1 s ) R s Q_(s)=((n+s+1)/(s))R_(s)Q_{s}=\binom{n+s+1}{s} R_{s}Qs=(n+s+1s)Rs
este un şir APPELL verificând condiţia:
(11) ( n + s + 1 s ) R s + ( n + s s 1 ) B n + s + 1 R s 1 ( n + s 1 s 2 ) ( n + s + 1 s ) R s + ( n + s s 1 ) B n + s + 1 R s 1 ( n + s 1 s 2 ) quad((n+s+1)/(s))R_(s)+((n+s)/(s-1))B_(n+s+1)R_(s-1)((n+s-1)/(s-2))\quad\binom{n+s+1}{s} R_{s}+\binom{n+s}{s-1} B_{n+s+1} R_{s-1}\binom{n+s-1}{s-2}(n+s+1s)Rs+(n+ss1)Bn+s+1Rs1(n+s1s2)
C n + s + 1 R s 2 = 0 C n + s + 1 R s 2 = 0 C_(n+s+1)R_(s-2)=0\boldsymbol{C}_{n+s+1} \boldsymbol{R}_{s-2}=0Cn+s+1Rs2=0
Si polinoamele R s R s R_(s)\boldsymbol{R}_{s}Rs intră in cazul studiat in a ficolul precedent sub No. 4.
Dar avem
B n + s + 1 = n + 2 s s × + σ ( n + s ) s ( n + 1 ) C n + s + 1 = n + s s x 2 σ ( n + s ) s ( n + 1 ) × B n + s + 1 = n + 2 s s × + σ ( n + s ) s ( n + 1 ) C n + s + 1 = n + s s x 2 σ ( n + s ) s ( n + 1 ) × {:[B_(n+s+1)=-(n+2s)/(s)xx+(sigma(n+s))/(s(n+1))],[C_(n+s+1)=(n+s)/(s)x^(2)-(sigma(n+s))/(s(n+1))xx]:}\begin{gathered} B_{n+s+1}=-\frac{n+2 s}{s} \times+\frac{\sigma(n+s)}{s(n+1)} \\ C_{n+s+1}=\frac{n+s}{s} x^{2}-\frac{\sigma(n+s)}{s(n+1)} \times \end{gathered}Bn+s+1=n+2ss×+σ(n+s)s(n+1)Cn+s+1=n+ssx2σ(n+s)s(n+1)×
(12) ( n + s + 1 ) R s + [ ( n + 2 s ) × + σ ( n + s ) n + 1 ] R s 1 + ( s 1 ) ( x 2 σ n + 1 × ) R s 2 = 0 (12) ( n + s + 1 ) R s + ( n + 2 s ) × + σ ( n + s ) n + 1 R s 1 + ( s 1 ) x 2 σ n + 1 × R s 2 = 0 {:[(12)(n+s+1)R_(s)+[-(n+2s)xx+(sigma(n+s))/(n+1)]],[R_(s-1)+(s-1)(x^(2)-(sigma)/(n+1)xx)R_(s-2)=0]:}\begin{align*} & (n+s+1) R_{s}+\left[-(n+2 s) \times+\frac{\sigma(n+s)}{n+1}\right] \tag{12}\\ & R_{s-1}+(s-1)\left(\mathrm{x}^{2}-\frac{\sigma}{n+1} \times\right) R_{s-2}=0 \end{align*}(12)(n+s+1)Rs+[(n+2s)×+σ(n+s)n+1]Rs1+(s1)(x2σn+1×)Rs2=0
întrăm deci in cazul general luând:
λ = 1 n + 3 , μ = σ ( n + 1 ) ( n + 3 ) , ν = 0 , β = σ ( n + 2 ) ( n + 1 ) ( n + 3 ) λ = 1 n + 3 , μ = σ ( n + 1 ) ( n + 3 ) , ν = 0 , β = σ ( n + 2 ) ( n + 1 ) ( n + 3 ) lambda=(1)/(n+3),mu=-(sigma)/((n+1)(n+3)),nu=0,beta=(sigma(n+2))/((n+1)(n+3))\lambda=\frac{1}{n+3}, \mu=-\frac{\sigma}{(n+1)(n+3)}, \nu=0, \beta=\frac{\sigma(n+2)}{(n+1)(n+3)}λ=1n+3,μ=σ(n+1)(n+3),ν=0,β=σ(n+2)(n+1)(n+3)
Se obţine apoi
s = 0 7 s s ! R s = c e α x G . ( n + 1 , n + 2 , σ n + 1 z ) s = 0 7 s s ! R s = c e α x G . n + 1 , n + 2 , σ n + 1 z uuu_(s=0)^(oo)(7^(s))/(s!)R_(s)=c*e^(alpha x)quad G.(n+1,n+2,-(sigma)/(n+1)z)\bigcup_{s=0}^{\infty} \frac{\boldsymbol{7}^{s}}{\boldsymbol{s}!} \boldsymbol{R}_{s}=\boldsymbol{c} \cdot \boldsymbol{e}^{\alpha x} \quad G .\left(n+1, n+2,-\frac{\sigma}{n+1} \mathrm{z}\right)s=07ss!Rs=ceαxG.(n+1,n+2,σn+1z)
căci R 0 = c R 0 = c R_(0)=c\boldsymbol{R}_{0}=\boldsymbol{c}R0=c,
s = 0 z n + s + 1 ( n + s + 1 ) ! Q s = z n + 1 ( n + 1 ) ! 0 z s s ! R s s = 0 z n + s + 1 ( n + s + 1 ) ! Q s = z n + 1 ( n + 1 ) ! 0 z s s ! R s sum_(s=0)^(oo)(z^(n+s+1))/((n+s+1)!)Q_(s)=(z^(n+1))/((n+1)!)sum_(0)^(oo)(z^(s))/(s!)R_(s)\sum_{s=0}^{\infty} \frac{z^{n+s+1}}{(n+s+1)!} Q_{s}=\frac{z^{n+1}}{(n+1)!} \sum_{0}^{\infty} \frac{z^{s}}{s!} R_{s}s=0zn+s+1(n+s+1)!Qs=zn+1(n+1)!0zss!Rs
şi deci funtia generatoare este
m = 0 z m m ! P m = e 2 x [ 1 + c z n + 1 ( n + 1 ) ! G ( n + 1 , n + 2 , σ n + 1 z ) ] m = 0 z m m ! P m = e 2 x 1 + c z n + 1 ( n + 1 ) ! G n + 1 , n + 2 , σ n + 1 z sum_(m=0)^(oo)(z^(m))/(m!)P_(m)=e^(2x)[1+c(z^(n+1))/((n+1)!)G(n+1,n+2,-(sigma)/(n+1)z)]\sum_{m=0}^{\infty} \frac{\mathbf{z}^{m}}{m!} \boldsymbol{P}_{m}=e^{2 x}\left[1+c \frac{\mathbf{z}^{n+1}}{(n+1)!} G\left(n+1, n+2,-\frac{\sigma}{n+1} z\right)\right]m=0zmm!Pm=e2x[1+czn+1(n+1)!G(n+1,n+2,σn+1z)]
Se poate dar spune pentru cazul general
P n = ( x + b ) n P n = ( x + b ) n P_(n)=(x+b)^(n)P_{n}=(\mathrm{x}+b)^{n}Pn=(x+b)n
că polinoamele sunt generate de functia
e ( x + b ) [ 1 + c z n + 1 ( n + 1 ) ! G ( n + 1 , n + 2 , θ z ) ] e ( x + b ) 1 + c z n + 1 ( n + 1 ) ! G ( n + 1 , n + 2 , θ z ) e^(ℓ(x+b))[1+c(z^(n+1))/((n+1)!)G(n+1,n+2,theta z)]e^{\ell(x+b)}\left[1+c \frac{z^{n+1}}{(n+1)!} G(n+1, n+2, \theta z)\right]e(x+b)[1+czn+1(n+1)!G(n+1,n+2,θz)]
b , c , d b , c , d b,c,db, c, db,c,d find constante arbitrare.
Rezultatul precedent a fost obtinut in ipoteza σ 0 σ 0 sigma!=0\sigma \neq 0σ0.
Dacă σ = 0 σ = 0 sigma=0\sigma=0σ=0 procedeul pe care l'am aplicat in lucrarea precedentă nu are sens, dar e uşor de văzut că formula rămâne aplicabilă. Se obține funce tia generatoare
e z ( x + b ) [ 1 + c z n + 1 ( n + 1 ) ! ] e z ( x + b ) 1 + c z n + 1 ( n + 1 ) ! e^(z(x+b))[1+c(z^(n+1))/((n+1)!)]e^{z(x+b)}\left[1+c \frac{z^{n+1}}{(n+1)!}\right]ez(x+b)[1+czn+1(n+1)!]
  1. Să trecem la cazul k = 1 k = 1 k=1k=1k=1, carc se tratează în acelaş mod.
P n = x n 19 ( x + b 1 ) P n = x n 19 x + b 1 P_(n)=x^(n-19)(x+b_(1))P_{n}=\mathrm{x}^{n-19}\left(\mathrm{x}+b_{1}\right)Pn=xn19(x+b1)
P n + 1 = x n ( x + n + 1 n b 1 ) + c , P n + 2 = x n + 1 ( x + n + 2 n b 1 ) + ( n + 2 ) c x + c 1 P n + 1 = x n x + n + 1 n b 1 + c , P n + 2 = x n + 1 x + n + 2 n b 1 + ( n + 2 ) c x + c 1 P_(n+1)=x^(n)(x+(n+1)/(n)b_(1))+c,P_(n+2)=x^(n+1)(x+(n+2)/(n)b_(1))+(n+2)cx+c_(1)P_{n+1}=\mathrm{x}^{n}\left(\mathrm{x}+\frac{n+1}{n} b_{1}\right)+c, P_{n+2}=\mathrm{x}^{n+1}\left(\mathrm{x}+\frac{n+2}{n} b_{1}\right)+(n+2) c \mathrm{x}+c_{1}Pn+1=xn(x+n+1nb1)+c,Pn+2=xn+1(x+n+2nb1)+(n+2)cx+c1 şi c 0 c 0 c!=0\boldsymbol{c} \neq 0c0.
Se găseşte că
α n + 2 = ( n + 2 ) β n + 2 = c 1 c = n b 1 α n + 2 = ( n + 2 ) β n + 2 = c 1 c = n b 1 {:[alpha_(n+2)=-(n+2)],[beta_(n+2)=-(c_(1))/(c)=-nb_(1)]:}\begin{aligned} & \alpha_{n+2}=-(n+2) \\ & \beta_{n+2}=-\frac{c_{1}}{c}=-n b_{1} \end{aligned}αn+2=(n+2)βn+2=c1c=nb1
Putem scrie şi aci
P m = x m 1 ( x + m n b 1 ) + Q m n 1 P m = x m 1 x + m n b 1 + Q m n 1 P_(m)=x^(m-1)(x+(m)/(n)b_(1))+Q_(m-n-1)\boldsymbol{P}_{m}=\mathrm{x}^{m-1}\left(\mathrm{x}+\frac{m}{n} b_{1}\right)+Q_{m-n-1}Pm=xm1(x+mnb1)+Qmn1
și polinoamele Q s Q s Q_(s)Q_{s}Qs verifică relatia (9). Se deduc polinoamele R R R\boldsymbol{R}R, cu relatia (11), care se scrie
( n + s + 1 ) R s + [ ( n + 2 s ) × + ( 1 n s ) b 1 ] R s 1 + ( s 1 ) ( x 2 + b x ) R s 2 = 0 ( n + s + 1 ) R s + ( n + 2 s ) × + ( 1 n s ) b 1 R s 1 + ( s 1 ) x 2 + b x R s 2 = 0 {:[(n+s+1)R_(s)+[-(n+2s)xx+(1-n-s)b_(1)]],[R_(s-1)+(s-1)(x^(2)+b_(x))R_(s-2)=0]:}\begin{gathered} (n+s+1) R_{s}+\left[-(n+2 s) \times+(1-n-s) b_{1}\right] \\ R_{s-1}+(s-1)\left(\mathrm{x}^{2}+b_{x}\right) R_{s-2}=0 \end{gathered}(n+s+1)Rs+[(n+2s)×+(1ns)b1]Rs1+(s1)(x2+bx)Rs2=0
şi se poate lua
λ = 1 n + 3 , μ = b 1 n + 3 , ν = 0 , β = n + 1 n + 3 b 1 λ = 1 n + 3 , μ = b 1 n + 3 , ν = 0 , β = n + 1 n + 3 b 1 lambda=(1)/(n+3),mu=(b_(1))/(n+3),nu=0,beta=-(n+1)/(n+3)b_(1)\lambda=\frac{1}{n+3}, \mu=\frac{b_{1}}{n+3}, \nu=0, \beta=-\frac{n+1}{n+3} b_{1}λ=1n+3,μ=b1n+3,ν=0,β=n+1n+3b1
şi functia generatoare este :
0 z s s ! R s = c e 2 x G ( n , n + 2 , b 1 z ) 0 z s s ! R s = c e 2 x G n , n + 2 , b 1 z sum_(0)^(oo)(z^(s))/(s!)R_(s)=c*e^(2x)G(n,n+2,b_(1)z)\sum_{0}^{\infty} \frac{\mathbf{z}^{s}}{\boldsymbol{s}!} \boldsymbol{R}_{s}=\boldsymbol{c} \cdot \boldsymbol{e}^{2 x} \boldsymbol{G}\left(\boldsymbol{n}, \boldsymbol{n}+2, b_{1} \mathbf{z}\right)0zss!Rs=ce2xG(n,n+2,b1z)
Se are pentru cazul general imediat :
0 z m m ! P m = e z ( x + b ) [ 1 + 2 n ( a b ) z + c G ( n , n + 2 ( a b ) z ) ] 0 z m m ! P m = e z ( x + b ) 1 + 2 n ( a b ) z + c G ( n , n + 2 ( a b ) z ) sum_(0)^(oo)(z^(m))/(m!)P_(m)=e^(z(x+b))[1+(2)/(n)(a-b)z+cG(n,n+2(a-b)z)]\sum_{0}^{\infty} \frac{\mathrm{z}^{m}}{m!} P_{m}=e^{z(\mathrm{x}+b)}\left[1+\frac{2}{n}(a-b) \mathrm{z}+c G(n, n+2(a-b) \mathrm{z})\right]0zmm!Pm=ez(x+b)[1+2n(ab)z+cG(n,n+2(ab)z)]
  1. Cazul k > 1 k > 1 k > 1k>1k>1, adică
P n = x n k ( x + b 1 ) k P n = x n k x + b 1 k P_(n)=x^(n-k)(x+b_(1))^(k)P_{n}=\mathrm{x}^{n-k}\left(\mathrm{x}+b_{1}\right)^{k}Pn=xnk(x+b1)k
n k k , k > 1 , n k k , k > 1 , n-k >= k,quad k > 1,n-k \geq k, \quad k>1,nkk,k>1,
Se poate ataşa cazului general luând
λ = 1 n 1 λ = 1 n 1 lambda=-(1)/(n-1)\lambda=-\frac{1}{n-1}λ=1n1
după cum am văzut în articolul trecut.
Am găsit :
λ = 1 n 1 , α = n 2 n 1 , μ = b 1 n 1 , ν = 0 , β = ( k 1 ) b 1 n 1 λ = 1 n 1 , α = n 2 n 1 , μ = b 1 n 1 , ν = 0 , β = ( k 1 ) b 1 n 1 lambda=-(1)/(n-1),alpha=-(n-2)/(n-1),mu=-(b_(1))/(n-1),nu=0,beta=-((k-1)b_(1))/(n-1)\lambda=-\frac{1}{n-1}, \alpha=-\frac{n-2}{n-1}, \mu=-\frac{b_{1}}{n-1}, \nu=0, \beta=-\frac{(k-1) b_{1}}{n-1}λ=1n1,α=n2n1,μ=b1n1,ν=0,β=(k1)b1n1
Ecuatia care dă funcția generatoare se scrie:
punem
z F [ z b 1 + n ] F + k b 1 F = 0 z F z b 1 + n F + k b 1 F = 0 zF^('')-[zb_(1)+n]F^(')+kb_(1)F=0z F^{\prime \prime}-\left[z b_{1}+n\right] F^{\prime}+k b_{1} F=0zF[zb1+n]F+kb1F=0
t F t 2 [ t + n ] F 1 + k F = 0 t F t 2 [ t + n ] F 1 + k F = 0 tF^('')_(t^(2))-[t+n]F^(')_(1)+kF=0t F^{\prime \prime}{ }_{t^{2}}-[t+n] F^{\prime}{ }_{1}+k F=0tFt2[t+n]F1+kF=0
Toate integralele acestei ecuaţii sunt holomorfe în jurul originei. Intr'a= devăr avem un polinom
i = 0 k k ( k 1 ) k i + 1 ) i ! n ( n 1 ) ( n i + 1 ) t i = P 1 ( t ) i = 0 k k ( k 1 ) k i + 1 i ! n ( n 1 ) ( n i + 1 ) t i = P 1 ( t ) sum_(i=0)^(k)(k(k-1)dots^(k)-i+1))/(i!n(n-1)dots(n-i+1))t^(i)=P_(1)(t)\sum_{i=0}^{k} \frac{\left.k(k-1) \ldots{ }^{k}-i+1\right)}{i!n(n-1) \ldots(n-i+1)} t^{i}=P_{1}(t)i=0kk(k1)ki+1)i!n(n1)(ni+1)ti=P1(t)
care satisface ecuaţia. Punând
F = e λ φ F = e λ φ F=e^(lambda)varphiF=e^{\lambda} \varphiF=eλφ
avem
t φ ( n t ) φ ( n k ) φ = 0 t φ ( n t ) φ ( n k ) φ = 0 tvarphi^('')-(n-t)varphi^(')-(n-k)varphi=0t \varphi^{\prime \prime}-(n-t) \varphi^{\prime}-(n-k) \varphi=0tφ(nt)φ(nk)φ=0
sau schimbând pe t t ttt în - t t ttt :
t φ ( n + t ) φ + ( n k ) φ = 0 t φ ( n + t ) φ + ( n k ) φ = 0 tvarphi^('')-(n+t)varphi^(')+(n-k)varphi=0t \varphi^{\prime \prime}-(n+t) \varphi^{\prime}+(n-k) \varphi=0tφ(n+t)φ+(nk)φ=0
Avem deci soluția distinctă de precedenta:
e t i = 0 n k ( 1 ) i ( n k ) ( n k 1 ) ( n k i + 1 ) i ! n ( n 1 ) ( n i + 1 ) i i = e t P 2 ( t ) e t i = 0 n k ( 1 ) i ( n k ) ( n k 1 ) ( n k i + 1 ) i ! n ( n 1 ) ( n i + 1 ) i i = e t P 2 ( t ) e^(t)sum_(i=0)^(n-k)(-1)^(i)((n-k)(n-k-1)dots(n-k-i+1))/(i!n(n-1)dots(n-i+1))i^(i)=e^(t)P_(2)(t)e^{t} \sum_{i=0}^{n-k}(-1)^{i} \frac{(n-k)(n-k-1) \ldots(n-k-i+1)}{i!n(n-1) \ldots(n-i+1)} i^{i}=e^{t} P_{2}(t)eti=0nk(1)i(nk)(nk1)(nki+1)i!n(n1)(ni+1)ii=etP2(t)
Se are deci
n = 0 z n n ! P n = e ι x [ c P 1 ( b 1 z ) + c 1 e z b 1 P 2 ( b 2 z ) ] n = 0 z n n ! P n = e ι x c P 1 b 1 z + c 1 e z b 1 P 2 b 2 z sum_(n=0)^(oo)(z^(n))/(n!)P_(n)=e^(iota x)[cP_(1)(b_(1)z)+c_(1)e^(z)b_(1)P_(2)(b_(2)z)]\sum_{n=0}^{\infty} \frac{\mathrm{z}^{n}}{n!} P_{n}=e^{\iota x}\left[c P_{1}\left(b_{1} \mathrm{z}\right)+c_{1} e^{z} b_{1} P_{2}\left(b_{2} \mathrm{z}\right)\right]n=0znn!Pn=eιx[cP1(b1z)+c1ezb1P2(b2z)]
constantele c , c 1 c , c 1 c,c_(1)\boldsymbol{c}, \boldsymbol{c}_{1}c,c1 fiind legate prin relatia
c + c 1 = 1 c + c 1 = 1 c+c_(1)=1c+c_{1}=1c+c1=1
In general vom avea polinoamele
n = 0 z n n ! P n = e 2 [ x + b ] [ c P 1 [ ( a b ) z ] + c 1 e [ a b ] z P 2 [ ( a b ) z ) ] n = 0 z n n ! P n = e 2 [ x + b ] c P 1 [ ( a b ) z ] + c 1 e [ a b ] z P 2 [ ( a b ) z ) sum_(n=0)^(oo)(z^(n))/(n!)P_(n)=e^(2[x+b])[cP_(1)[(a-b)z]+c_(1)e^([a-b]z)P_(2)[(a-b)z)]\sum_{n=0}^{\infty} \frac{\mathbf{z}^{n}}{n!} P_{n}=e^{2[x+b]}\left[c P_{1}[(a-b) \mathbf{z}]+c_{1} e^{[a-b] z} P_{2}[(a-b) \mathbf{z})\right]n=0znn!Pn=e2[x+b][cP1[(ab)z]+c1e[ab]zP2[(ab)z)]
6. Dacă un B n B n B_(n)B_{n}Bn e nul identic trebue să avem
λ = 1 2 n 3 λ = 1 2 n 3 lambda=-(1)/(2n-3)\lambda=-\frac{1}{2 n-3}λ=12n3
şi suntem în cazul precedent. Acesta deci nu prezintă un caz distinct de cele studiate.
Paris, 8.XI. 1928.

Related Posts

Asupra polinoamelor cari formează un şir Appell (II)

Abstract   AutoriT. Popoviciu Cuvinte cheiePDFhttps://ictp.acad.ro/wp-content/uploads/2022/09/1932-b-Popoviciu-Bull.-Math.-Soc.-Roum.-Sci.-Asupra-polinoamelor-cari-formeaza-un-sir-Appell-II.pdf https://www.jstor.org/stable/43769713 Citați articolul în formaT. Popoviciu, Asupra polinoamelor cari formează un şir Appell (II), Bull.…

Observaţii asupra polinoamelor binomiale

Abstract   AutoriT. Popoviciu Cuvinte cheiePDFhttps://ictp.acad.ro/wp-content/uploads/2025/10/1931-c-Popoviciu-Bull.-Soc.-Sc.-Cluj-Remarques-sur-les-polynomes-binomiaux.pdf Citați articolul în formaT. Popoviciu, Observaţii asupra polinoamelor binomiale, Buletinul Soc. de Ştiinţe din…

Despre şirurile monotone

Abstract   AutoriT. Popoviciu Institutul de Calcul Cuvinte cheiePDFVersiunea scanată. Versiunea compilată din LaTeX. Citați articolul în formaT. Popoviciu, Despre…

Asupra unor formule de medie

Abstract AutoriTiberiu Popoviciu Institutul de Calcul Cuvinte cheie? Citați articolul în forma T. Popoviciu, Asupra unor formule de medie, Rev. Anal. Numer. Teoria…