Summary

Prof. dr. Ion Păvăloiu – outstanding member of the Institute, at present honorary member.

He was employed at the Institute between 1962-2013.

He has been the Head of the Institute between 1990-2008, and he had a major contribution in the developing of the Institute and in the formation as mathematicians of numerous graduates employed at the Institute.

At present, he serves as Deputy Editor-in-Chief of the Editorial Board of Journal of Numerical Analysis and Approximation Theory, edited under the auspices of the Romanian Academy, as well as a member of the Editorial Board of the (ISI ranked) journal Carpathian Journal of Mathematics.

He is a distinguished member of the Cluj Team on Numerical Analysis and Approximation Theory.


Version of July 16, 2017.

 

Membru marcant al Institutului (în prezent, membru de onoare).

A fost angajat la Institut în perioada 1962-2013.

A fost directorul Institutului în perioada 1990-2008, şi a avut o contribuţie majoră în dezvoltarea Institutului şi în formarea ca matematicieni a numeroşi absolvenţi angajaţi la Institut.

CV

Personal Data

Date and place of birth 2 November 1939
village Urecheşti (com. Drăguţeşti), Gorj district
Romania

Education and degrees

1971 Ph.D. in Mathematics, “Tiberiu Popoviciu” Institute of Numerical Analysis
Scientific advisor: Acad. Tiberiu Popoviciu
Thesis: Contributions to the study of fast converging iterative methods used to solve operational equations
1957-1962 Batchelor Degree, Mathematics
University Babeş-Bolyai, Cluj-Napoca
Thesis: Optimal strategies for rocket guiding
1953-1956 High school “Tudor Vladimirescu”, Târgu-Jiu

Employment history

1991-2013 Senior researcher (I) at Tiberiu Popoviciu Institute of Numerical Analysis (ICTP)
1998-2004 Professor at North University of Baia-Mare
1990-2008 Head of ICTP
1990-1991 Senior researcher (II) at ICTP
1970-1990 Senior researcher (III) at ICTP
1966-1970 Researcher at ICTP
1962-1966 Research assistant at ICTP

PhD advisor

He was PhD supervisor at North University of Baia-Mare (8 PhD students – see here the Nodak-AMS math. genealogy project).

His PhD students are also listed in the Cluj Team on Numerical Analysis and Approximation Theory graph.

Editorial activities

Current/recent research domains:

  • inverse interpolation methods
  • methods with optimal convergence order, among different classes of iterative methods
  • efficiency of iterative methods, methods with optimal efficiency index
  • iterative methods monotone with monotone approximations
  • iterative methods (Newton, Newton-type) for solving of nonlinear systems of equations in Rn
  • iterative methods (Newton, Chebyshev, Steffensen, etc) for numerical solving of eigenproblems
  • methods in functions approximations
  • iterative methods for solving nonlinear equations in Banach spaces
  • stability of the numerical methods for solving equations and the error evaluation

Past research activity:

  • Mechanics
  • Computer science
  • Numerical methods in medicine

Membership in professional societies

Grants

He took part in the following contracts:

  1. 2 CEx06-11-96/19.09.2006, Efficient Numerical Methods with Applications on Supercomputers, ANCS Research Excellence Program for the period 2006 September – 2008 December. (Scientific manager)
  2. GAR Nr.11/2006. The Increasing of Accuracy in Iterative Methods for Solving Systems, (Scientific consultant and collaborator)
  3. GAR nr.14/2005. The increasing of accuracy in iterative methods for solving nonlinear systems, (Scientific consultant and collaborator)
  4. GAR nr.16/2004 of the Romanian Academy, Finite difference Newton-Krylov methods
  5. GAR nr.19/2003 of the Romanian Academy, The error control in floating arithmetic for the finite differences of the Newton-Krylov methods (collaborator).
  6. GAR nr.45/2002 of the Romanian Academy, High order convergence of the successive approximations (collaborator).
  7. Grant nr.7037/2001 of M.E.C., Newton methods for the singular case; the linear convergence (consultant)
  8. GAR nr.64/2001 of the Romanian Academy, High order convergence of the successive approximations (collaborator)
  9. GAR nr.6100GR/13 oct. 2000, ANSTI, Convergence theorems for quasi-Newton and inexact Newton methods (collaborator).
  10. GAR nr.97/1999 of the Romanian Academy, The relation between the characterizations of the convergence orders of the practical methods for Newton algorithm.
  11. GAR nr.95/1998 of the Romanian Academy, The qualitative study of the perturbations influence on the stability of inexact Newton method (collaborator).

Other professional activities

  • Member of over 12 expert committees for PhD dissertation examination
  • Reviewer at Mathematical Reviews (AMS).
  • Member in the expert committee of the national council CNCSIS.

Didactic activity

  • Mathematical analysis
  • Algebra and differential and analytical geometry
  • Numerical analysis
  • Differential and integral equations
  • Numerical methods in analysis
  • Interpolation methods for numerical solving equations
  • Special topics in mathematical analysis
Publications

Books

  1. I. Păvăloiu, N. Pop, Interpolation and Applications, Lambert Academic Publishing, 2017, 280 pp., ISBN 978-3-330-08939-6
  2. I. Păvăloiu, N. Pop, Interpolare şi aplicaţii, Editura Risoprint, Cluj-Napoca, 2005, 322 pp., ISBN 973-651-028-3 (in Romanian)
  3. I. Păvăloiu, Capitole speciale de analiză matematică, Ed. Cordial Lex, Cluj-Napoca, 1994, ISBN 973-96105-9-5, 200 pp. (in Romanian).
  4. I. Păvăloiu, Rezolvarea ecuaţiilor prin interpolare, Ed. Dacia, 1981, 190 pp. (in Romanian) (pdf available soon)
  5. I. Păvăloiu, Introducere în teoria aproximării soluţiilor ecuaţiilor, Ed. Dacia, 1976, 208 pp. (in Romanian) (pdf available soon)

Note: the publications may be consulted as posts, clickable by author (e.g., I. Păvăloiu), category (either, e.g., (original), (survey), paper, book or mathematical field, e.g., global random walk, time series), tag (year), etc.
The processing of the information is in progress.

Articles

  1. I. Păvăloiu, On an Aitken-Steffensen-Newton type method, Carpathian J. Math., 34 (2018) no. 1, 85-92.
  2. I. Păvăloiu, On the convergence of some one step and multistep iterative methods, manuscript.
  3. I. Păvăloiu, E. Cătinaş, On a robust Aitken–Newton method based on the Hermite polynomial, Appl. Math. Comput., 287-288 (2016), pp. 224-231.
  4. I. Păvăloiu, E. Cătinaş, On a Newton-Steffensen type method, Appl. Math. Lett., 26 (2013) no. 6, pp. 659-663.
  5. I. Păvăloiu, E. Cătinaş, On an Aitken-Newton type method, Numer. Algor., 62 (2013) no. 2, pp. 253-260.
  6. I. Păvăloiu, E. Cătinaş, Bilateral approximations for some Aitken-Steffensen-Hermite type methods of order three, Appl. Math. Comput., 217 (2011) 12, pp. 5838-5846.
  7. D.N. Pop, R.T. Trîmbiţaş, I. Păvăloiu, Solution of a polylocal problem with a pseudospectral method, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity, 8 (2010), pp. 53-64 (ISSN 1584-4536).
  8. I. Păvăloiu, A unified treatment of the modified Newton and chord methods, Carpathian J. Math. 25 (2009) no. 2, pp. 192-196.
  9. I. Păvăloiu, E. Cătinaş, On a Steffensen-Hermite method of order three, Appl. Math. Comput., 215 (2009) 7, pp. 2663-2672.
  10. Păvăloiu I., O metodă de tip Aitken-Steffensen-Hermite de ordinul 3, Seminarul Tiberiu Popoviciu de Ecuaţii Funcţionale, Aproximare şi convexitate, 24-27 septembrie 2008, Cluj-Napoca, pp. 37-41 (in Romanian; English title: An Aitken-Steffensen-Hermite type method of order three).
  11. I. Păvăloiu, E. Cătinaş, On a Steffensen type method, IEEE Proceedings, 2007, pp. 369-375.
  12. I. Păvăloiu, E. Cătinaş, On an Aitken type method, Rev. Anal. Numér. Théor. Approx., 36 (2007) no. 2, pp. 173-176.
  13. I. Păvăloiu, Bilateral approximations of the roots of scalar equations by Lagrange-Aitken-Steffensen method of order three, Rev. Anal. Numér. Théor. Approx., 35 (2006) no. 2, pp. 173-182.
  14. I. Păvăloiu, On a Steffensen-Hermite type method for approximating the solutions of nonlinear equations, Rev. Anal. Numér. Théor. Approx. 35 (2006) no. 1, pp. 87-94.
  15. I. Păvăloiu, Bilateral approximations of solutions of equations by order three Steffensen-type methods, Studia Univ. Babeş-Bolyai, Mathematica, vol. 51 (2006) no. 3, pp. 105-114.
  16. I. Păvăloiu, Accelerating the convergence of the iterative methods of interpolatory type, Rev. Anal. Numér. Théor. Approx., 34 (2005) no. 2, pp. 169-173.
  17. I. Păvăloiu, Local convergence of some Newton type methods for nonlinear systems, Rev. Anal. Numér. Théor. Approx., 33 (2004) 2, pp. 209-213.
  18. I. Păvăloiu, Local convergence of general Steffensen type methods, Rev. Anal. Numér. Théor. Approx., 33 (2004) 1, pp. 79-86.
  19. I. Păvăloiu, On approximating the inverse of a matrix, Creative Math., 12 (2003), pp. 15-20.
  20. I. Păvăloiu, On the convergence order of some Aitken-Steffensen type methods, Rev. Anal. Numér. Théor. Approx., 32 (2003) no. 2, pp. 193-202.
  21. I. Păvăloiu, Emil Cătinaş, On the Chebyshev method, with numerical applications to the eigenpair problem, Analele Universităţii de Vest Timişoara, Seria Matem. si Inform., 41 (2003) fasc. Special, pp. 183-191.
  22. I. Păvăloiu, Aitken-Steffensen-type methods for nonsmooth functions (III), Rev. Anal. Numér. Théor. Approx., 32 (2003) no. 1, pp. 73-77.
  23. E. Cătinaş, I. Păvăloiu, Solving polynomial operator equations of degree 2 by Steffensen-type iterations with approximate inverses, Proceedings of the International Symposium on Numerical Analysis and Approximation Theory (NAAT), May 9-11, Cluj-Napoca, 2002, R. Trimbitas (ed.), pp. 101-113. ISBN 973-610-166-5.
  24. E. Cătinaş, I. Păvăloiu, On a third order iterative method for solving polynomial operator equations, Rev. Anal. Numér. Théor. Approx., 31 (2002) no. 1, pp. 21-28.
  25. I. Păvăloiu, Aitken-Steffensen-type methods for nonsmooth functions (II), Rev. Anal. Numér. Théor. Approx., 31 (2002) no. 2, pp. 191-196.
  26. I. Păvăloiu, Aitken-Steffensen-type methods for nonsmooth functions (I), Rev. Anal. Numér. Théor. Approx., 31 (2002) no. 1, pp. 109-114.
  27. I. Păvăloiu, On the approximation of solutions to nonlinear operators between metric spaces, Bul. Ştiinţ. Univ. Baia Mare, 18 (2002) no. 1, pp. 69-72.
  28. I. Păvăloiu, A Halley-Aitken-type method for approximating the solutions of scalar equations, Bul. Ştiinţ. Univ. Baia Mare, 17 (2001) nos. 1-2, pp. 85-92.
  29. I. Păvăloiu, On some Aitken-Steffensen-Halley-type method for approximating the roots of scalar equations, Rev. Anal. Numér. Théor. Approx., 30 (2001) no. 2, pp. 207-212.
  30. I. Păvăloiu, On a Halley-Steffensen method for approximating the solutions of scalar equations, Rev. Anal. Numér. Théor. Approx., 30 (2001) no. 1, pp. 69-74.
  31. I. Argyros, E. Cătinaş, I. Păvăloiu, Perturbed-Steffensen-Aitken projection methods for solving equations with nondifferentiable operators, Punjab Univ. J. Math. (Lahore), 33 (2000), pp. 105-113 (link to the journal).
  32. I. Argyros, E. Cătinaş, I. Păvăloiu On the approximate solutions of implicit functions using the Steffensen method, Proyecciones, 19 (2000) no. 3, pp. 291-303 (link to the journal).
  33. I. Păvăloiu, Optimal efficiency index of a class of Hermite iterative methods with two steps, Rev. Anal. Numér. Théor. Approx., 29 (2000) no. 1, pp. 83-89.
  34. I. Păvăloiu, On the Chebyshev method for approximating the solutions of polynomial operator equations of degree 2, Bul. Ştiinţ. Univ. Baia Mare, 16 (2000) no. 2, pp. 219-224.
  35. I.K. Argyros, E. Cătinaş, I. Păvăloiu, Conditions for the convergence of perturbed Steffensen methods on a Banach space with convergence structure, Adv. Nonlinear Var. Inequal., 3 (2000) no. 1, pp. 23-35.
  36. I.K. Argyros, E. Cătinaş, I. Păvăloiu, On some general iterative methods for solving nonlinear operator equations containing a nondifferential term, Adv. Nonlinear Var. Inequal., 3 (2000) no. 1, pp. 15-21.
  37. I.K. Argyros, E. Cătinaş, I. Păvăloiu, On the convergence of Steffensen Aitken-like methods using divided differences obtained recursively, Adv. Nonlinear Var. Inequal., 3 (2000) no. 1, pp. 7-13.
  38. I. Păvăloiu, Monotone sequences for approximating the solutions of equations, Bul. Ştiinţ. Univ. Baia Mare Ser. B Mat.-Inf., 15 (1999) nos. 1-2, pp. 103-110.
  39. E. Cătinaş, I. Păvăloiu, Some numerical aspects in the approximation of eigenpairs of matrices by the Newton method, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, 42 (1999) vol. 1, pp. 41-44.
  40. E. Cătinaş, I. Păvăloiu, On some interpolatory iterative methods for the second degree polynomial operators (II), Rev. Anal. Numér. Théor. Approx., 28 (1999) no. 2, pp. 133-143.
  41. I. Păvăloiu, E. Cătinaş, Remarks on some Newton and Chebyshev-type methods for approximation eigenvalues and eigenvectors of matrices, Comput. Sci. J. Mold., 7 (1999) no. 1, pp. 3-15.
  42. I. Argyros, E. Cătinaş, I. Păvăloiu, Local and global convergence results for a class of Steffensen-Aitken-type methods, Adv. Nonlinear Var. Inequal. 2 (1999) no. 2, pp. 117-126.
  43. I. Păvăloiu, Optimal algorithms concerning the solving of equations by interpolation, Research on Theory of Allure, Approximation, Convexity and Optimization, Ed. Srima, Cluj-Napoca (1999), pp. 222-248, ISBN 973-98551-4-3.
  44. I. Păvăloiu, A note on the efficiency index of a class of two step Hermite iterative methods, Conferences in Analysis, Functional Equations Approximation and Convexity, in honor of prof. Elena Popoviciu, Cluj-Napoca, pp. 228-233 (1999).
  45. I. Păvăloiu, On the efficiency of the computations for approximating the solutions of equations, Bul. Ştiinţ. Univ. Baia Mare, Ser. B Mat.-Inf., 14 (1998) no. 1, pp. 59-64.
  46. I. Argyros, E. Cătinaş, I. Păvăloiu, Improving the rate of convergence of some Newton-like methods for the solution of nonlinear equations containing a nondifferentiable term, Rev. Anal. Numér. Théor. Approx., 27 (1998) no. 2, pp. 191-202.
  47. E. Cătinaş, I. Păvăloiu, On some interpolatory iterative methods for the second degree polynomial operators (I), Rev. Anal. Numér. Théor. Approx., 27 (1998) no. 1, pp. 33-45.
  48. I. Păvăloiu, On an approximation formula, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 179-184.
  49. I. Păvăloiu, On the convergence order of the multistep methods, Bul. Ştiinţ. Univ. Baia Mare, Ser. Mat.-Inf. 13 (1997), pp. 59-64.
  50. D. Luca, I. Păvăloiu, On the Heron’s method for approximating the cubic root of a real number, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 103-108.
  51. E. Cătinaş, I. Păvăloiu, On approximating the eigenvalues and eigenvectors of linear continuous operators, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 19-27.
  52. I. Păvăloiu, Optimal efficiency indexes for iterative methods of interpolatory type, Computer Science Journal of Moldova, 5 (1997) no. 1(13), pp. 20-43.
  53. E. Cătinaş, I. Păvăloiu, On a Chebyshev-type method for approximating the solutions of polynomial operator equations of degree 2, Approximation and Optimization, Proceedings of the International Congress on Approximation and Optimization (Romania)-ICAOR, Cluj-Napoca, July 29-August 1, 1996, vol. I, pp. 219-226, D.D. Stancu, Gh. Coman, W.W. Breckner and P. Blaga (eds.), Transilvania Press, 1997, ISBN 973-98180-7-2.
  54. E. Cătinaş, I. Păvăloiu, On the Chebyshev method for approximating the eigenvalues of linear operators, Rev. Anal. Numér. Théor. Approx., 25 (1996) nos. 1-2, pp. 43-56.
  55. I. Păvăloiu, Asupra unei metode de rezolvare a sistemelor neliniare în spaţii metrice, Sem. Itin. T. Popoviciu, Cluj-Napoca, 16-21 mai 1995, pp. 83-86 (in Romanian; English title: On a method for solving nonlinear systems in metric spaces).
  56. I. Păvăloiu, Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32 (1995) nos. 1-2, pp. 69-82.
  57. I. Păvăloiu, On computational complexity in solving equations by Steffensen type methods, Rev. Anal. Numér. Théor. Approx., 24 (1995) no. 2, pp. 215-220.
  58. I. Păvăloiu, On computational complexity in solving equations by interpolation methods, Rev. Anal. Numér. Théor. Approx., 24 (1995) no. 1, pp. 201-214.
  59. I. Păvăloiu, Observations concerning some approximation methods for the solutions of operator equations, Rev. Anal. Numér. Théor. Approx., 23 (1994) no. 2, pp. 185-195.
  60. I. Păvăloiu, Bilateral approximations for the solutions of scalar equations, Rev. Anal. Numér. Théor. Approx., 23 (1994) no. 1, pp. 95-100.
  61. I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen’s method, Mathematica, 35(58) (1993) no. 1, pp. 71-76.
  62. I. Păvăloiu, A convergency theorem concerning the chord method, Rev. Anal. Numér. Théor. Approx., 22 (1993) no. 1, pp. 83-85.
  63. I. Păvăloiu, Some remarks on the convergence of Newton’s method for the solution of operatorial equations whose operators have continuous Hölderian derivative, Univ. ”Babeş-Bolyai” Cluj-Napoca, Research Seminars, Preprint no. 6 (1992).
  64. I. Păvăloiu, Error estimation in numerical solution of equations and systems of equations, Rev. Anal. Numér. Théor. Approx., 21 (1992) no. 2, pp. 153-165.
  65. I. Păvăloiu, Optimal problems concerning interpolation methods of solution of equations, Publications de L’Institut Mathématique (Nouvelle série) Beograd, 52(66) (1992), pp. 113-126.
  66. I. Păvăloiu, Sur une généralisation de la méthode de Steffensen, Rev. Anal. Numér. Théor. Approx., 21 (1992) no. 1, pp. 59-67 (in French).
  67. I. Păvăloiu, Remarks on the secant method for the solution of nonlinear operatorial equations, Research Seminars, Seminar on Mathematical Analysis, Preprint no. 7 (1991), pp. 127-132.
  68. I. Păvăloiu, On the convergency of a Steffensen-type method, Research Seminars, Seminar of Mathematical Analysis, Preprint no. 7 (1991), pp. 121-126.
  69. I. Păvăloiu, On the chord method, Bul. Ştiinţ. Univ. Baia Mare, Seria B. Fasc. Mat.-Fiz., 7 (1991), pp. 61-66.
  70. I. Păvăloiu, Sur une méthode de type Steffensen utilisée pour la résolution des equations operationnelles non-linéaires, Seminar on functional analysis and numerical methods, Preprint no. 1 (1989), pp. 105-110 (in French).
  71. I. Păvăloiu, Sur l’approximation des racines des equations dans une espace métrique, Seminar on functional analysis and numerical methods, Preprint no. 1 (1989), pp. 95-104 (in French).
  72. I. Păvăloiu, Délimitation des erreur dans la résolution numérique des systèmes d’equations, Seminar on mathematical analysis, Preprint no. 7 (1988), pp. 167-178 (in French).
  73. I. Păvăloiu, Un algorythme de calcul dans la résolution des equations par interpolation, Seminar on functional analysis and numerical methods. Preprint no. 1 (1987), pp. 130-134 (in French).
  74. I. Păvăloiu, Estimation des erreurs dans le résolution numérique des systèmes d’équations dans des espaces métriques, Seminar on functional analysis and numerical methods, Preprint no. 1 (1987), pp. 121-129 (in French).
  75. I. Păvăloiu, Sur l’estimation des erreurs en convergence numérique de certaines méthodes d’iteration, Seminar on functional analysis and numerical methods, Preprint no. 1 (1986), pp. 133-136 (in French).
  76. I. Păvăloiu, La convergence de certaines méthodes itératives pour résoudre certaines equations operationnelles, Seminar on functional analysis and numerical methods, Preprint no. 1 (1986), pp. 127-132 (in French).
  77. C. Iancu, T. Oproiu, I. Păvăloiu, Inverse interpolation spline with applications to the equation solving, Seminar on functional analysis and numerical methods Preprint no. 1 (1986), pp. 67-84.
  78. C. Iancu, I. Păvăloiu, Resolution des equations à l’aide des fonctions rationnelles d’interpolation invèrse, Seminar on functional analysis and numerical methods, Preprint no. 1 (1985), pp. 71-78 (in French).
  79. C. Iancu, I. Păvăloiu, La resolution des équations par interpolation inverse de type Hermite, Mathematica (Cluj), 26(49) (1984) no. 2, pp. 115-123 (in French).
  80. C. Iancu, I. Păvăloiu, Resolution des equations à l’aide des fonctions splines d’interpolation invèrse, Babes-Bolyai University, Faculty of Mathematics, Seminar on functional analysis and numerical methods, Preprint no. 1 (1984), pp. 97-104 (in French).
  81. C. Iancu, I. Păvăloiu, I. Şerb, Méthodes itératives optimales de type Steffensen obtenues par interpolation invèrse, Seminar on functional analysis and numerical methods, Preprint no. 1 (1983), pp. 81-88 (in French).
  82. I. Păvăloiu, I. Şerb, Sur des méthodes itératives optimales, Seminar on functional analysis and numerical methods, Preprint no. 1 (1983), pp. 175-182 (in French).
  83. I. Păvăloiu, I. Şerb, Sur quelques méthodes itératives de type intérpolatoire à vitèsse de convergence optimale, Anal. Numér. Théor. Approx., 12 (1983) no. 1, pp. 83-88 (in French).
  84. I. Păvăloiu, Observaţii asupra punctelor fixe ale operatorilor în spaţii metrice. Lucrările celui de al III-lea Simpozion Naţional de Analiză Funcţională şi aplicaţii, Craiova 6-7 noiembrie 1981, pp. 121-122 (in Romanian).
  85. I. Păvăloiu, La résolution des equations par intérpolation, Mathématica, 23(46) (1981) no. 1, pp. 61-72 (in French).
  86. I. Păvăloiu, Sur l’ordre de convergence des méthodes d’itération, Mathématica, 23(46) (1981) no. 1, pp. 261-272 (in French).
  87. I. Păvăloiu, Une variante de méthode de Newton, Anal. Numér. Théor. Approx., 7 (1978) no. 1, pp. 95-99 (in French).
  88. I. Păvăloiu, Une généralisation de la methode de Newton, Mathematica, 20(43) (1978) no. 1, pp. 45-52 (in French).
  89. I. Păvăloiu, Sur l’approximation des solutions des equations à l’aide des suites à éléments dans un espace de Banach, Anal. Numér. Théor. Approx., 5 (1976) no. 1, pp. 63-67 (in French).
  90. I. Păvăloiu, Sur la convergence d’une classe de méthodes itératives de J.F. Traub, Rev. Anal. Numér. Théor. Approx., 2 (1973), pp. 99-104 (in French).
  91. A. Diaconu, I. Păvăloiu, Asupra unor metode iterative pentru rezolvarea ecuaţiilor operaţionale neliniare, Rev. Anal. Numer. Teoria Aproximaţiei, 2 (1973) no. 1, pp. 61-69 (in Romanian).
  92. A. Diaconu, I. Păvăloiu, Sur quelques méthods itératives pour la résolution des equations operationnelles, Rev. Anal. Numér. Théor. Approx., 1 (1972), pp. 45-61 (in French).
  93. N. Ciontea, I. Borza, C. Darie, F. Kramer, M. Mihoc, I. Păvăloiu, Metodă analitică de calcul a fazelor din masele de porţelan, Cercetările multidisciplinare şi interdisciplinare. Originea, dezvoltarea şi perspectivele lor, (1971), pp. 217-228 (in Romanian).
  94. I. Păvăloiu, Evaluarea erorilor în rezolvarea numerică a ecuaţiilor operatoriale, Studii şi cercetări matematice, 9 23 (1971), pp. 1459-1464 (in Romanian).
  95. I. Păvăloiu, Consideraţii asupra metodelor iterative obţinute prin interpolare inversă, Studii şi cercetări matematice, 23 10 (1971), pp. 1545-1549 (in Romanian).
  96. I. Păvăloiu, Asupra operatorilor iterativi, Studii şi cercetări matematice, 23 10 (1971), pp. 1567-1574 (in Romanian).
  97. I. Păvăloiu, Sur les procedées itératifs à un ordre élevé de convergence, Mathematica, 12(35) (1970) no. 2, pp. 309-324 (in French).
  98. I. Păvăloiu, Interpolation dans des éspaces linéaires normées et applications, Mathematica, 12(35) (1970) no. 1, pp. 149-158 (in French).
  99. I. Păvăloiu, La résolution des systèmes d’équations opérationnelles à l’aide des méthodes itératives, Mathematica, 11(34) (1969), pp. 137-141 (in French).
  100. M. Niculescu, M. Mihoc, I. Păvăloiu, L. Săcelean, V. Mârza, Contribuţii la studiul morfologiei celulelor din leucemia acută, Studii şi cercetări de embriologie şi citologie, seria Citologie, 2 (1968), pp. 93-112 (in Romanian).
  101. T. Coman, M. Mihoc, I. Păvăloiu, L. Seceleanu, Aplicarea unor metode de statistică în histohitectonia limfoganglionului prepectoral la bovidee, Morfologia normală şi patologică, 6 (1968), pp. 489-499 (in Romanian).
  102. I. Păvăloiu, Sur la méthode de Steffensen pour la résolution des équations operationnelles nonlinéaires, Revue Roumaine des Mathématiques pures et appliquées, 13 (1968) no. 1, pp. 857-861 (in French).
  103. I. Păvăloiu, Asupra unor inegalităţi recurente şi aplicaţii ale lor, Studii şi cercetări matematice, 8 (1967), pp. 1175-1179 (in Romanian).
  104. I. Păvăloiu, Observaţii asupra rezolvării sistemelor de ecuaţii cu ajutorul procedeelor iterative, Studii şi cercetări matematice, 19 (1967) no. 9, pp. 1289-1298 (in Romanian; English translation provided).
  105. L. Negrescu, I. Păvăloiu, Asupra verificării formale a schemelor logice de algoritmi, Studii şi cercetări matematice, 17 (1965) no. 2, pp. 271-286 (in Romanian).
  106. L. Negrescu, I. Păvăloiu, O proprietate a schemelor de algoritmi, Studii şi cercetări matematice, 17 (1965) no. 2, pp. 1405-1409 (in Romanian).
  107. L. Negrescu, I. Păvăloiu, T. Rus, Programarea la maşinile universale cifrice a unei probleme de optimizare, Calcul economic, vol. I, 1964 (in Romanian).
  108. I. Păvăloiu, Sur l’intérpolation à l’aide des polynômes raccordées, Mathematica, 6(27) (1964) no. 2, pp. 295-299 (in French).
  109. P. Brădeanu şi I. Păvăloiu, Regimuri optime de dirijare a tracţiunii unor rachete, Studii şi cercetări de mecanică aplicată, 4 (1963), pp. 805-816 (in Romanian).

PhD thesis

  1. I. Păvăloiu, Contribuţii la studiul metodelor iterative rapid convergente care se aplică la rezolvarea ecuaţiilor operatoriale, 1971 (in Romanian); advisor: T. Popoviciu.

Other

  1. E. Cătinaș, I. Păvăloiu, Professor Costică Mustăța at his 75th anniversary, J. Numer. Anal. Approx. Theory, 46 (2017) no 1, pp. 3-5.
  2. I. Păvăloiu, E. Cătinaş. In memoriam professor Dimitire D. Stancu, honorary member of the Romanian Academy, Rev. Anal. Numér. Théor. Approx., 43 (2014) no. 2, 93-102.
  3. I. Păvăloiu, E. Cătinaş, The international conference “Semicentennial T. Popoviciu Institute of Numerical Analysis”, May 7-10, 2008, Rev. Anal. Numér. Théor. Approx., 37 (2008) no. 2, 107-108.
  4. Gh. Coman, I. Păvăloiu, Academician D.D. Stancu at his eightieth birthday anniversary, Rev. Anal. Numér. Théor. Approx. 34 (2007) no. 1, pp. 5-8.
  5. I. Păvăloiu and C. Mustăţa, Institutul de Calcul “T. Popoviciu” la semicentenar, Academica, nos. 60-61, XVIII, (197-198), 2007, pp. 55-57.
  6. I. Păvăloiu and C. Mustăţa, “Tiberiu Popoviciu” Institute of Numerical Analysis at its semi-centennial, Rev. Anal. Numér. Théor. Approx., 36 (2007) no. 2, pp. 117-121.
  7. I. Păvăloiu, At the 45th anniversary of “Tiberiu Popoviciu” Institute of Numerical Analysis, Rev. Anal. Numér. Théor. Approx., 31 (2002) no. 2, pp. 121-122.
  8. Gh. Coman, I. Păvăloiu, At the 75th birthday anniversary of academician professor Dimitrie D. Stancu, Rev. Anal. Numér. Théor. Approx., 31 (2002) no. 1, pp. 5-7.
  9. I. Păvăloiu, Profesoara Elena Popoviciu – cercetător la Institutul de Calcul “Tiberiu Popoviciu”, L. Lupşa and M. Ivan eds., Analysis, Functional Equations, Approximation and Convexity, Proceedings of the conference held in honor of Professor Elena Popoviciu of her 75th birthday, Cluj-Napoca, October 15-16, 1999, pp. xxiii-xxiv. (in Romanian)
  10. I. Păvăloiu, Tiberiu Popoviciu, ctitor al Institutului de Calcul din Cluj-Napoca, Academica, VIII, 4, (88), 1998, p. 30.

Click on “<” or “>” to slide, on “X” to enlarge.

Menu